Supporting Information:

cis(Cl, Namino)-[RuCl(TPA)(Me₂SO)]Cl (5) and trans(Cl, Namino)-[RuCl(TPA)(Me₂SO)]Cl (1). A solution of TPA (0.41 g, 1.4 mmol) and cis-[RuCl₂(Me₂SO)₄] (0.68 g, 1.4 mmol) in 80 mL of methanol was refluxed for 2 h. The reaction mixture was concentrated to dryness, and resulting solid was dissolved in a small amount of methanol. After adding ethyl acetate, the solution was kept in a refrigerator overnight. Yellow precipitates were collected and dried in vacuo. The crude complex was a mixture of an approximately equal amount of the trans and cis isomers, which was isolated by fractional recrystallization from methanol and ethyl acetate. The cis isomer (5) and the trans isomer (1) were obtained as yellow powder and pale orange powder, respectively. The complex 5 was less soluble. Yield 0.24 g (32 %) for 5 and 0.39 g (52 %) for 1. Anal. For 5: Found: C, 43.01; H, 4.69; N, 10.03. Calcd for C₂₀H₂₄Cl₂N₄ORuS H₂O: C, 42.72; H, 4.80; N, 9.76. For 1: Found: C, 43.01; H, 4.69; N, 10.03. Calcd for C₂₀H₂₄Cl₂N₄ORuS H₂O: C, 42.72; H, 4.80; N, 9.76. FAB-MS: (M-Cl)⁺ 505 for 1 and 5. ¹H NMR: δ (CD₃CN, 270MHz) For 5: 3.42 (6H, s, CH₃), 4.69 (2H, s, CH₂(ax)), 4.79 (2H, d, J=15 Hz, CH₂(eq)), 5.76 (2H, d, J=15, CH₂(eq)), 6.95 (1H, d, J=7.9, py-H3(ax)), 7.16-7.25 (3H, m, py-H5(ax + eq)), 7.46-7.51 (3H, m, py-H4(ax) + py-H3(eq)), 7.73 (2H, t, J=7.8, py-H4(eq)), 8.70 (2H, d, J=5.6, py-H6(eq)), 9.81 (1H, d, J=5.6, py-H6(ax)). For 1: 2.84 (6H, s, CH₃), 4.53 (2H, s, CH₂(ax)), 4.72 (2H, d, J=15 Hz, CH₂(eq)), 5.39 (2H, d, J=15, CH₂(eq)), 7.13 (1H, d, J=7.9, py-H3(ax)), 7.26-7.36 (3H, m, py-H5(ax + eq)), 7.43 (2H, d, J=7.9, py-H3(eq)), 7.64 (1H, t, J=7.9, py-H4(ax)), 7.76 (2H, t, J=7.8, py-H4(eq)), 8.75 (2H, d, J=5.3, py-H6(eq)), 9.69 (1H, d, J=5.6, py-H6(ax)). The pyridyl protons having small J values of about 5.5 Hz were easily assigned as H6 and other protons were determined from it. The assignment of the pyridyl groups was confirmed by COSY measurements.

trans(Cl, N_{amino})-[RuCl{5-(MeOCO)₃-TPA}(Me₂SO)]Cl (2) The complex 2 was obtained in the procedure similar to the complex 1 using 5-(MeOCO)₃-TPA and cis-[RuCl₂(Me₂SO)₄] except that the resulting product was recrystallized from methanol-ethyl acetate and orange crystals obtained were the trans(Cl, N_{amino}) isomer. Yield 88%. FAB-MS: (M- Cl)⁺ 679, (M- Cl -Me₂SO)⁺ 601. ¹H NMR: δ (CDCl₃, 270MHz) 2.93 (6H, s, Me₂SO), 3.95 (6H, s, CH₃OCO), 3.98 (3H, s, CH₃OCO), 5.38 (2H, s, CH₂(ax)), 5.42 (2H, d, J=15.5Hz, CH₂(eq)), 5.81 (2H, d, J=15.5Hz, CH₂(eq)), 7.64 (1H, d, J=8.2Hz, py-H3(ax)), 7.82 (2H, J=8.2Hz, py-H3(eq)), 8.17 (1H, dd, J=2.0, 8.2Hz, py-H4(ax)), 8.29 (2H, dd, J=2.0, 8.2Hz, py-H4(eq)), 9.33 (2H, d, J=2.0Hz, py-H6(eq)), 10.29 (1H, d, J=2.0Hz, py-H6(ax)).

The complex **2** is assumed to be trans isomer, since the chemical shift of DMSO methyl groups is similar to that of trans(Cl, N_{amino})-[RuCl(TPA)(Me₂SO)]Cl (1). The structure of trans(Cl,

 N_{amino})-[RuCl(TPA)(Me₂SO)][RuCl₃(Me₂SO)₃] **3** and cis(Cl, N_{amino})-[RuCl(TPA)(Me₂SO)]Cl (**5**) has been confirmed by X-ray structure analysis.^{6a,6e}

trans(Cl, N_{amino})-[RuCl{5-(MeOCO)₃-TPA}(Me₂SO)]PF₆ (4) The complex 4 was obtained by adding ammonium hexafluorophosphate to a solution of complex 2 in water. Yield 98%. FAB-MS: (M-PF₆)⁺ 679, (M-PF₆-Me₂SO)⁺ 601. ¹H NMR: δ (CD₃CN, 270MHz) 2.86 (6H, s, Me₂SO), 3.89 (6H, s, CH₃OCO), 3.93 (3H, s, CH₃OCO), 4.59 (2H, s, CH₂(ax)), 4.87 (2H, d, J=15.5Hz, CH₂(eq)), 5.39 (2H, d, J=15.5Hz, CH₂(eq)), 7.24 (1H, d, J=8.2Hz, py-H3(ax)), 7.57 (2H, J=8.2Hz, py-H3(eq)), 8.16 (1H, dd, J=2.0, 8.2Hz, py-H4(ax)), 8.27 (2H, dd, J=2.0, 8.2Hz, py-H4(eq)), 9.20 (2H, d, J=2.0Hz, py-H6(eq)), 10.22 (1H, d, J=2.0Hz, py-H6(ax)).

TableS-1.CrystallographicDatafortrans(Cl, N_{amino})-[RuCl{5-(MeOCO)3-TPA}(Me2SO)]PF6 (4).

	4
empirical formula	C. H., CIF.N.O., PRUS
fw	827 60
rvstal system	triclinic
a Å	11 5045 (9)
h Å	14 2950 (11)
c, Å	11.4761 (8)
α, deg	104.455 (3)
β, deg	106.799 (3)
γ, deg	97.201 (2)
V, Å ³	1709.4 (2)
space group	P-1
Z	2
D_{calc} , g cm ⁻³	1.608
Temperature, K	293
μ (Mo K α), cm ⁻¹	7.25
no. of reflections used	7097
no. of variables	506
R	0.033
R _w	0.092
goodness of fit	1.18

Figure S-1. ¹H NMR spectra of trans(Cl, N_{amino})-[RuCl(TPA)(DMSO)]Cl (1) in Me₂SO-d₆. Concentration: ca. 1.0 x 10⁻³ mol/l. a) Before irradiation. δ (Me₂SO-d₆, 270MHz) 2.81 (6H, s, CH₃), 4.66 (2H, s, CH₂(ax)), 4.83 (2H, d, J=15 Hz, CH₂(eq)), 5.26 (2H, d, J=15, CH₂(ax)), 7.25 (1H, d, J=7.9, py-H3(ax)), 7.40-7.45 (3H, m, py-H5(ax + eq)), 7.55 (2H, d, J=7.9, py-H3(eq)), 7.77 (1H, t, J=7.9, py-H4(ax)), 7.88 (2H, t, J=7.8, py-H4(eq)), 8.67 (2H, d, J=5.3, py-H6(eq)), 9.62 (1H, d, J=5.6, py-H6(ax)). b) After 600-min irradiation. The peak of DMSO(*) at 2.81 ppm collapsed.

Figure S-2. ¹H NMR spectra of trans(Cl, N_{amino})-[RuCl(TPA)(DMSO)]Cl (1) in MeCN-d₃. Concentration: ca. 1.0 x 10⁻³ mol/l. a) Before irradiation. ¹H NMR: δ (CD₃CN, 270MHz) 2.85 (6H, s, CH₃), 4.49 (2H, s, CH₂(ax)), 4.67 (2H, d, J=15 Hz, CH₂(eq)), 5.41 (2H, d, J=15, CH₂(ax)), 7.12 (1H, d, J=7.9, py-H3(ax)), 7.27-7.32 (3H, m, py-H5(ax + eq)), 7.43 (2H, d, J=7.9, py-H3(eq)), 7.63 (1H, t, J=7.9, py-H4(ax)), 7.77 (2H, t, J=7.8, py-H4(eq)), 8.76 (2H, d, J=5.3, py-H6(eq)), 9.70 (1H, d, J=5.6, py-H6(ax)). b) After 150-min irradiation. The peak of DMSO(*) at 2.85 ppm collapsed, and a free DMSO(O) appeared at 2.55 ppm.

Figure S-3. ¹H NMR spectra of trans(Cl, Namino)-[RuCl{5-(MeOCO)₃-TPA}(DMSO)]Cl (2) in Me₂SO-d₆. Concentration: ca. 1.0 x 10^{-3} mol/l. a) Before irradiation. ¹H NMR: δ (Me₂SO-d₆, 270MHz) 2.90 (6H, s, (CH₃)₂SO), 3.92 (6H, s, CH₃OCO), 3.95 (3H, s, CH₃OCO), 4.88 (2H, s, CH₂(ax)), 5.04 (2H, d, J=15.5Hz, CH₂(eq)), 5.32 (2H, d, J=15.5Hz, CH₂(eq)), 7.43 (1H, d, J=8.2Hz, py-H3(ax)), 7.76 (2H, d, J=8.2Hz, py-H3(eq)), 8.26 (1H, dd, J=2.0, 8.2Hz, py-H4(ax)), 8.40 (2H, dd, J=2.0, 8.2Hz, py-H4(eq)), 9.18 (2H, d, J=2.0Hz, py-H6(eq)), 10.20 (1H, d, J=2.0Hz, py-H6(ax)). b) After 110-min irradiation. The peak of DMSO(*) at 2.90 ppm collapsed.

Figure S-4. UV-vis spectral change of trans(Cl, N_{amino})-[RuCl{5-(MeOCO)₃-TPA}(Me₂SO)]Cl (**2**), under photoirradiation in MeCN. Isosbestic points at 274 nm and 340 nm. λ_{max} (before irradiation): 334 nm; 379 nm. λ_{max} (after irradiation): 368 nm; 433 nm. 3.95 x 10⁻⁵ mol/l. 0, 3, 15, 30 sec, 1, 1.5, 2 min.

Figure S-5. ¹H NMR spectra of trans(Cl, Namino)-[RuCl{5-(MeOCO)₃-TPA}(DMSO)]Cl (2) in MeCN-d₃. a) Before irradiation. ¹H NMR: δ (CD₃CN, 270MHz) 2.86 (6H, s, (CH₃)₂SO), 3.89 (6H, s, CH₃OCO), 3.93 (3H, s, CH₃OCO), 4.59 (2H, s, CH₂(ax)), 4.82 (2H, d, J=15.5Hz, CH₂(eq)), 5.44 (2H, d, J=15.5Hz, CH₂(eq)), 7.24 (1H, d, J=8.2Hz, py-H3(ax)), 7.57 (2H, d, J=8.2Hz, py-H3(eq)), 8.16 (1H, dd, J=2.0, 8.2Hz, py-H4(ax)), 8.27 (2H, dd, J=2.0, 8.2Hz, py-H4(eq)), 9.20 (2H, d, J=2.0Hz, py-H6(eq)), 10.22 (1H, d, J=2.0Hz, py-H6(ax)). b) After 110-min irradiation. The peak of DMSO(*) at 2.86 ppm collapsed, and a free DMSO(O) appeared at 2.47 ppm.

Figure S-6. UV-vis spectral change of trans(Cl, N_{amino})-[RuCl{5-(MeOCO)₃-(TPA}(Me₂SO)]PF₆ (4), under photoirradiation in the presence of 4-picoline (10 equiv.) in 1,2-dichloroethane. Isosbestic points at 348 nm. λ_{max} (before irradiation): 332 nm; 383 nm. λ_{max} (after irradiation): 381 nm; 483 nm(sh). 8.10 x 10⁻⁵ mol/l. 0, 5, 15, 30sec, 1.5, 3, 5, 8 min.