Figure S1.

Two orientations of isolated anions in $(Et_4N)_6[Nb_6F_6Br_6(NCS)_6]Br_2(1)$ and $Cs_{1.6}K_{2.4}[Nb_6F_6I_6(NCS)_6](2)$

a) along three-fold axis;

b) showing plane of six fluoride ligands around Nb₆ cluster.

 $[Nb_{6}^{i}F_{6}^{i}Br_{6}^{a}(NCS)_{6}^{a}]^{4}$ anion

 $[Nb_{6}^{i}F_{6}^{i}I_{6}^{a}(NCS)_{6}^{a}]^{4-}$ anion

Figure S2.

a) Environment of Nb₆ cluster in parent Cs₄Nb₆F_{8.5}I_{9.5}. Occupancies of disordered Iⁱ and Fⁱ in Cs₄Nb₆Fⁱ_{8.5}Iⁱ_{3.5}I^a₆ are 0.5 and 2.5, respectively.

b) Possible isomers of $Nb_6L_{12}^{i}$ cluster core in parent $Cs_4Nb_6F_{8.5}I_{9.5}$:

The experimental I/F ratio (9.5/8.5) in $Cs_4[Nb_6F^i_{8.5}I^i_{3.5}I^a_{6}]$ could result from an equimolar mixture of $Nb_6F^i_{8}I^i_{4}$ and $Nb_6F^i_{9}I^i_{3}$ units, or a mixture of $Nb_6F^i_{9}I^i_{3}$ and $Nb_6F^i_{6}I^i_{6}$ with ratio 5:1. The isolation of **2** with low yield favors the latter possibility altough the presence of traces other isomers units ($Nb_6F^i_{9}I^i_{3}$, $Nb_6F^i_{8}I^i_{4}$, $Nb_6F^i_{7}I^i_{5}$ and $Nb_6F^i_{6}I^i_{6}$) is also assumed.