General procedures All reactions and manipulations were carried out under dry oxygen-free nitrogen atmosphere using Schlenk techniques. All solvents were carefully purified by appropriate procedures. CH₂Cl₂ and CH₃CN was distilled over CaH₂ under nitrogen and CH₃OH over Mg(OCH₃)₂ under nitrogen before use. Air sensitive compounds were stored under nitrogen at -30 °C. ¹³CO was purchased from Isotec Inc (USA), ethene from Linde gas UK. CF₃SO₃H (HOTf), CF₃CO₂H (TFA) and $p-CH_3(C_6H_4)SO_3H$ (HOTs).were purchased from Aldrich and used as received. 1, 3-bis(di-isobutylphosphino)propane (dibpp) was prepared by reaction of diisobutylphosphine with 1, 3-dibromopropane to give the double HBr salt which was subsequently neutralized with sodium hydroxide and distilled to give the diphosphine product.^[1] The palladium dimethyl complex, $[Pd(dibpp)(CH_3)_2]$, was synthesized as described in the literature.^[2, 3] A solution of dibpp in acetone was added to a solution of [Pd(TMEDA)(CH₃)₂] in 30 ml acetone, and the mixture stirred for 18 hr. The solution was then taken to dryness in vacuo at 0 °C, washed with cold hexane and dried in vacuo. ${}^{31}P{}^{1}H$ and ${}^{13}C{}^{1}H$ NMR spectra were recorded on a Bruker AMX 200 NMR machine with a CD₂Cb capillary lock at 193 K unless specified otherwise. $^{13}C{^{1}H}NMR$ spectra were obtained by using ^{13}C - enriched carbon monoxide.

$\langle $	Pd Pd P Y		I ₃][Y]	Pd Pd Y		[~] CH ₃][Y]
	Y	Χ	Y	Y	X	Y
1 a	CF ₃ SO ₃	1b MeCN	CF ₃ SO ₃		2b MeCN	CF ₃ SO ₃
		1c CO	CF_3SO_3		2c CO	CF ₃ SO ₃
		1d CH ₃ OH	CF ₃ SO ₃		2d CH ₃ OH	CF ₃ SO ₃
1e	CF ₃ CO ₂	1f MeCN	CF ₃ CO ₂	2e CF ₃ CO ₂	2f MeCN	CF ₃ CO ₂
		1g CO	CF ₃ CO ₂		2g CO	CF_3CO_2
1h	OTs*	1i MeCN	OTs	2h OTs	2i MeCN	OTs
		1k CO	OTs		2k CO	OTs
		1j CH ₃ OH	OTs		2j CH ₃ OH	OTs

Table 1. Palladium diphosphine compounds prepared in this work

 $*OTs = CH_3C_6H_4SO_3$

Synthesis of $[Pd(dibpp)(CH_3)X](1a, X = CF_3SO_3; 1e, X = CF_3CO_2; 1h, X = CH_3C_6H_4SO_3] [Pd(dibpp)(CH_3)_2]$ was dissolved in 2 ml CH₂Cl₂ in a 10 mm NMR tube and then cooled to -78 °C; one equivalent of the corresponding acid, CF₃SO₃H,

 CF_3CO_2H or $CH_3C_6H_4SO_3H$ was then added and the solution warmed to room temperature briefly until the ³¹P{¹H} NMR spectrum indicated that the reaction had gone to completion.

 $[Pd(dibpp)(CH_3)(CF_3SO_3)](1a)^{31}P\{^1H\} NMR: d 18.8 (d, J(P,P) = 41 Hz); - 16.6 (d, J(P,P) = 41 Hz).$

 $[Pd(dibpp)(CH_3)(CF_3CO_2)](1e)^{31}P\{^1H\} NMR: d 12.7 (d, J(P,P) = 41 Hz); - 11.4 (d, J(P,P) = 41 Hz).$

 $[Pd(dibpp)(CH_3)(CH_3C_6H_4SO_3)](1h) \ {}^{31}P\{{}^{1}H\} \text{ NMR: } d \ 17.2 \ (d, \ J(P,P) = 42 \text{ Hz}); -12.2 \ (d, \ J(P,P) = 42 \text{ Hz}).$

Synthesis of $[Pd(dibpp)(CH_3)(CH_3CN)]Y(1b, Y = CF_3SO_3; 1f, Y =$

 CF_3CO_2 ; 1i, $Y = CH_3C_6H_4SO_3$) [Pd(dibpp)(CH₃)₂] was dissolved in a mixture of 1.8 ml CH₂Cl₂ and 0.2 ml CH₃CN in a 10 mm NMR tube and then cooled to -78 °C; one equivalent of the corresponding acid CF₃SO₃H, CF₃CO₂H or CH₃C₆H₄SO₃H was then added and the solution warmed to room temperature briefly until the ³¹P{¹H} NMR spectrum indicated that the reaction had gone to completion.

 $[Pd(dibpp)(CH_3)(CH_3CN)][CF_3SO_3] (1b) {}^{31}P{}^{1}H} NMR: d 11.0 (d, J(P,P) = 41 Hz); -15.6 (d, J(P,P) = 41 Hz).$

 $[Pd(dibpp)(CH_3) (CH_3CN)][CF_3CO_2) (1f) {}^{31}P{}^{1}H} NMR: d 10.8 (d, J(P,P) = 41 Hz); -15.6 (d, J(P,P) = 41 Hz).$

 $[Pd(dibpp)(CH_3) (CH_3CN)][CH_3C_6H_4SO_3] (1i) {}^{31}P{}^{1}H} NMR: d 11.1 (d, J(P,P) = 42 Hz); -15.7 (d, J(P,P) = 42 Hz).$

Synthesis of $[Pd(dibpp)(CH_3)(CH_3OH)]Y (1d, Y = CF_3SO_3; 1j, Y =$

 $CH_3C_6H_4SO_3$) [Pd(dibpp)(CH₃)₂] was dissolved in a mixture of 1.8 ml CH₂Cl₂ and 0.2 ml CH₃OH in a 10 mm NMR tube and then cooled to -78 °C; one equivalent of the corresponding acid CF₃SO₃H, CH₃C₆H₄SO₃H was then added and the solution warmed to room temperature briefly until the ³¹P{¹H} NMR spectrum indicated that the reaction had gone to completion.

 $[Pd(dibpp)(CH_3)(CH_3OH)][CF_3SO_3] (1d) {}^{31}P{}^{1}H} NMR: d 18.8 (d, J(P,P) = 41 Hz); -14.2 (d, J(P,P) = 41 Hz).$

 $[Pd(dibpp)(CH_3) (CH_3OH)][CH_3C_6H_4SO_3] (1j) {}^{31}P{}^{1}H} NMR: d 18.9 (d, J(P,P) = 42 Hz); -14.3 (d, J(P,P) = 42 Hz).$

Synthesis of $[Pd(dibpp)(CH_3)(CO)]Y(1c, Y = CF_3SO_3; 1g, Y = CF_3CO_2;$

1k, Y= CH₃C₆H₄SO₃⁻) CO was bubbled briefly through a solution of 1a, 1e or 1h in dichloromethane at -78° C; ³¹P{¹H} NMR spectroscopies revealed the formation, in situ, of 1c, 1g or 1k correspondingly.

 $[Pd(dibpp)(CH_3)(CO)][CF_3SO_3] (1c) {}^{31}P{}^{1}H} NMR: d -0.5 (d, J(P,P) = 47 Hz); -12.3 (d, J(P,P) = 47 Hz); {}^{13}C{}^{1}H} NMR: d 181.6 (dd, J(P_{trans},C) = 114 Hz J(P_{cis},C) = 16 Hz).$

 $[Pd(dibpp)(CH_3) (CO)][CF_3CO_2] (1g)^{31}P\{^{1}H\} NMR: d -0.8 (d, J(P,P) = 48 Hz); -13.5 (d, J(P,P) = 48 Hz); ^{13}C\{^{1}H\} NMR: d 181.6 (dd, J(P_{trans},C) = 114 Hz J(P_{cis},C) = 16 Hz).$

 $[Pd(dibpp)(CH_3) (CO)][CH_3C_6H_4SO_3] (1k) {}^{31}P{}^{1}H{} NMR: d -0.6 (d, J(P,P) = 47 Hz); -13.4 (d, J(P,P) = 47 Hz); {}^{13}C{}^{1}H{} NMR: d 181.7 (dd, J(P_{trans},C) = 114 Hz J(P_{cis},C) = 16 Hz).$

Synthesis of $[Pd(dibpp)(C(O)CH_3)(CH_3OH)][CF_3SO_3]$ (2d) CO was bubbled thoroughly through a solution of 1d in a mixture of dichloromethane and methanol (9:1) at -78 °C. The solution was then warmed to -30 °C when the ³¹P{¹H} NMR spectroscopies revealed the formation, in situ, of 2c and 2d.

 $[Pd(dibpp)(C(O)CH_3)(CO)][CF_3SO_3] (2c) {}^{31}P{}^{1}H{} NMR: d -6.7 (d, J(P,P) = 73 Hz); -19.2 (d, J(P,P) = 73 Hz); {}^{13}C{}^{1}H{} NMR: d 235.2 (dd, J(P_{trans},C) = 88 Hz J(P_{cis},C) = 5 Hz); 176.9 (dd, J(P_{trans},C) = 80 Hz J(P_{cis},C) = 20 Hz).$

 $[Pd(dibpp)(C(O)CH_3)(CH_3OH)][CF_3SO_3] (2d) {}^{31}P{}^{1}H} NMR: d 13.4 (d, J(P,P) = 66 Hz); -19.1 (d, J(P,P) = 66 Hz); {}^{13}C{}^{1}H} NMR of 2d: d 243.0 (dd, J(P_{trans},C) = 116 Hz J(P_{cis},C) = 12 Hz).$

Synthesis of $[Pd(dibpp)(C(O)CH_3)(CF_3CO_2)]$ (2e) CO was bubbled thoroughly through a solution of 1e in dichloromethane at $-78^{\circ}C$. The solution was warmed to $-30 \,^{\circ}C$ for 1 hour when the ${}^{31}P{}^{1}H$ NMR spectrum revealed the quantitative formation of 2e. ${}^{31}P{}^{1}H$ NMR: *d* 10.0 (d, $J(P,P) = 67 \, \text{Hz}$); -15.8 (d, $J(P,P) = 67 \, \text{Hz}$); ${}^{13}C{}^{1}H$ NMR: *d* 247.8 (dd, $J(P_{\text{trans}},C) = 125 \, \text{Hz} J(P_{\text{cis}},C) = 10 \, \text{Hz}$). Synthesis of $[Pd(dibpp)(C(O)CH_3)(CH_3C_6H_4SO_3)]$ (2h) CO was bubbled thoroughly through a solution of 1h in dichloromethane at -78 °C. The solution was then warmed to -30 °C for 1 hour when the ³¹P{¹H} NMR spectrum revealed the formation of a mixture of 2h and 2k, on purging the solution with nitrogen at -78 °C for 10 minutes, 2h was formed quantitatively (³¹P{¹H} NMR). ³¹P{¹H} NMR: *d* 12.5 (d, J(P,P) = 70 Hz); -16.6 (d, J(P,P) = 70 Hz); ¹³C{¹H} NMR: *d* 244.6 (dd, $J(P_{trans},C)$ = 122 Hz $J(P_{cis},C) = 12$ Hz).

Synthesis of $[Pd(dibpp)(C(O)CH_3)(CH_3CN)]Y(2b, Y = CF_3SO_3; 2f, Y =$

 CF_3CO_2 ; 2i, Y = $CH_3C_6H_4SO_3$) CO was bubbled thoroughly through a solution of 1b, 1f, or 1i in a mixture of dichloromethane and acetonitrile (9:1) at -78 °C, the solution was warmed to -30 °C for 1 hour when the ³¹P{¹H} NMR spectrum revealed the quantitative formation of 2b, 2f or 2i respectively.

 $[Pd(dibpp)(C(O)CH_3)(CH_3CN)][CF_3SO_3] (2b) {}^{31}P{}^{1}H{} NMR: d 5.4 (d, J(P,P) = 70 Hz); -19.6 (d, J(P,P) = 70 Hz); {}^{13}C{}^{1}H{} NMR: d 242.6 (dd, J(P_{trans},C) = 112 Hz J(P_{cis},C) = 10 Hz).$

 $[Pd(dibpp)(C(O)CH_3)(CH_3CN)][CF_3CO_2] (2f)^{31}P\{^1H\} NMR: d 4.9 (d, J(P,P) = 70 Hz); -19.7 (d, J(P,P) = 70 Hz); ^{13}C\{^1H\} NMR: d 242.8(dd, J(P_{trans},C) = 112 Hz J(P_{cis},C) = 16 Hz).$

 $[Pd(dibpp)(C(O)CH_3)(CH_3CN)][CH_3C_6H_4SO_3] (2i) {}^{31}P{}^{1}H NMR: d 4.9$ (d, J(P,P) = 70 Hz); -19.7 (d, J(P,P) = 70 Hz); ${}^{13}C{}^{1}H NMR: d 242.6$ (dd, $J(P_{trans},C) = 113$ Hz $J(P_{cis},C) = 10$ Hz).

Synthesis of $[Pd(dibpp)(C(O)CH_3)(CO)]Y(2c, Y = CF_3SO_3; 2k, Y =$

CH₃C₆H₄SO₃⁻) Excess CO was bubbled thoroughly through a solution of **1a** or **1h** in dichloromethane at -78° C. The solution was then warmed to -30° C for 1 hour when the ³¹P{¹H} NMR spectra revealed the quantitative formation, in situ, of **2c** or **2k**.

 $[Pd(dibpp)(C(O)CH_3)(CO)][CF_3SO_3] (2c) {}^{31}P{}^{1}H{} NMR: d -6.7 (d, J(P,P) = 73 Hz); -19.2 (d, J(P,P) = 73 Hz); {}^{13}C{}^{1}H{} NMR: d 235.2 (dd, J(P_{trans},C) = 88 Hz); J(P_{cis},C) = 5 Hz); 176.9 (dd, J(P_{trans},C) = 80 Hz J(P_{cis},C) = 20 Hz).$

 $[Pd(dibpp)(C(O)CH_3)(CO)][CH_3C_6H_4SO_3] (2k)^{31}P\{^{1}H\} NMR: d -6.8 (d, J(P,P) = 73 Hz); -18.6 (d, J(P,P) = 73 Hz);^{13}C\{^{1}H\} NMR: d 235.5 (dd, J(P_{trans},C) = 88 Hz J(P_{cis},C) = 5 Hz); 176.9 (dd, J(P_{trans},C) = 80 Hz J(P_{cis},C) = 20 Hz).$

Synthesis of $[Pd(dibpp)(C(O)CH_3)(CO)][CF_3CO_2]$ (2g) Excess CO was bubbled thoroughly through a solution of 1e in a mixture of dichloromethane and methanol (9:1) at -78 °C. The solution was then warmed to -30 °C for 1 hour when the ³¹P{¹H} NMR spectra revealed the formation, in situ, of 2g. ³¹P{¹H} NMR: *d* -6.1 (d, J(P,P) = 73 Hz); -18.5 (d, J(P,P) = 73 Hz); ¹³C{¹H} NMR: *d* 234.7 (dd, $J(P_{trans},C)$ = 88 Hz $J(P_{cis},C) = 6$ Hz); 176.9 (dd, $J(P_{trans},C) = 79$ Hz $J(P_{cis},C) = 20$ Hz).

Synthesis of [Pd(dibpp)(C(O)CH₃)(CH₃OH)][CH₃C₆H₄SO₃] (2j) CO was bubbled thoroughly through a solution of 1j in a mixture of dichloromethane and methanol (9:1) at -78 °C, the solution was then warmed to -30 °C when the ³¹P{¹H} NMR spectrum revealed the formation, in situ, of 2j. ³¹P{¹H} NMR: *d* 13.4 (d, J(P,P) = 66 Hz); -19.2 (d, J(P,P) = 66 Hz); ¹³C{¹H} NMR: *d* 245.5 (dd, $J(P_{trans},C) =$ 117 Hz $J(P_{cis},C) = 12$ Hz).

Methanolysis of $[Pd(dibpp)(C(O)CH_3)(CH_3CN)]Y$ (2b, $Y = CF_3SO_3$; 2f, $Y = CF_3CO_2$; 2i, $Y = CH_3C_6H_4SO_3$) 0.2 ml CH₃OH was added to a solution of 2b, 2f or 2i in a mixture of CH₂Cb and CH₃CN (9:1) at -78 °C, the solution then warmed to -30 °C and the reactions followed by ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectroscopies. No methyl acetate or any other organic product was observed by ${}^{13}C{}^{1}H$ NMR after 20 hours at -30 °C. On warming the solutions to room temperature, 1b, 1f or 1i were detected as the only new species by ${}^{31}P{}^{1}H$ NMR indicating decarbonylation reactions dominate.

Methanolysis of [Pd(dibpp)(C(O)CH₃)(X)] (2e, X = CF₃CO₂⁻; 2h, X = CH₃C₆H₄SO₃⁻) 0.2 ml CH₃OH was added to a CH₂Cl₂ solution of 2e or 2h at -78° C, and the solutions warmed up to -30° C. The reactions were followed by 13 C{¹H} and 31 P{¹H} NMR spectroscopies, progressive formation of methyl acetate was observed by 13 C{¹H} NMR for both 2e and 2h.

Methanolysis of [Pd(dibpp)(C(O)CH₃)(CO)]Y (2g, Y = CF₃CO₂⁻; 2k, Y = CH₃C₆H₄SO₃⁻) 0.2 ml CH₃OH was added to a CH₂Cl₂ solution of 2g or 2k at -78° C, and the solutions were warmed to -30° C. The reactions were followed by 13 C{¹H} and 31 P{¹H} NMR spectroscopies. Progressive formation of methyl acetate was observed by 13 C{¹H} NMR for both 2g and 2k.

Methanolysis of [Pd(dibpp)(C(O)CH₃)(CO)][CF₃SO₃] (2c) 0.2 ml CH₃OH was added to a CH₂Cl₂ solution of 2c or 2h at -78 °C, then the solutions were warmed to -30 °C. [Pd(dibpp)C(O)CH₃(CH₃OH)] (CF₃SO₃) (2d) was detected as an intermediate and its decay was followed by ³¹P{¹H} NMR spectroscopies. Progressive formation of methyl acetate was observed by ¹³C{¹H} NMR.

Figure 1. The relative affinity of OTs, CH_3CN and CO for the palladium center in Pd(dibpp)-acyl complexes. (a) ¹³CO was bubbled through a solution of [Pd(dibpp)CH₃(OTs)] (**1h**) at 193K for 5 minutes, [Pd(dibpp)(C(O)CH₃)(OTs)] (**2h**) and [Pd(dibpp)(C(O)CH₃)(CO)][OTs] (**2k**) are formed; (b) 1 equivalent CH₃CN was added at 193K to the solution prepared in (a), [Pd(dibpp)(C(O)CH₃)(CH₃CN)][OTs] (**2i**) is formed, a small amount of **2k** and **2h** remain; (c) the solution in (b) was purged with nitrogen at –78 °C for 10 minutes, essentially quantitative conversion to **2i** is observed.

References:

- [1] E. Drent, P. H. M. Budzelaar, J. Organomet. Chem. 2000, 593-594, 211.
- [2] J. Ledford, C. S. Shultz, D. P. Gates, P. S. White, J. M. DeSimone, M. Brookhart, *Organometallics* **2001**, *20*, 5266.
- [3] W. De Graaf, J. Boersma, W. J. J. Smeets, A. L. Spek, and G. van Koten, *Organometallics* **1989**, *8*, 2907.