Mesoporous silica-supported zirconocene catalysts for highly isotactic polypropylene

Catherine J. Miller and Dermot O'Hare*

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Rd, Oxford, UK, OX1 3TA. Fax: 01865 285131; Tel: 01865 285130; E-mail: dermot.ohare@chem.ox.ac.uk

Supplementary information:

Material	BET surface area	% reduction in	C value of BET(2)
	(m^2g^{-1})	surface area	equation
MCM-41	820.56		97.67
2	558.93	31.9	19.57
SBA-15	706.45		113.13
3	558.55	20.9	106.67
MCM-48	641.84		66.13
4	597.19	7.0	38.86
DMS-150	672.58		36.08
5	367.89	45.3	40.64
Amorphous silica	316.53		224.26
6	244.77	20.7	21.58
MCM-41 ¹	1139		80
MCM-41/HN(SiMe ₃) $_2^1$	851	25.3	26
MCM-41 ⁴²	930		
MCM-41/TMSC1 ⁴²	660	29.0	
MCM-41/BuMe ₂ SiCl ⁴²	550	40.9	
MCM-41/	440	50.7	
OctylMe ₂ SiCl ⁴²	440	52.7	
MCM-41 ¹³	1140		
MCM-41/Cp ₂ ZrCl ₂ ¹³	1106	3.0	
Grace Silica ¹³	372		
Grace Silica/Cp ₂ ZrCl ₂ ¹³	346	7.0	
SBA-15 ²⁰	910		
MCM-48 ²³	1100		

 Table 1 BET surface areas of and C values of the BET(2) equation for mesoporous materials and supported zirconocenes

29Si Solid State NMR Spectra of silica substates and zirconocene functionalsed supports

Matarial	²⁹ Si chemical shifts (ppm)				Assignment of
Waterial	\mathbf{Q}^2	$Q^3 \qquad Q^4$		other Si sites	Si sites
1				$32.3^{a} (36.47)^{b}$	Cl ₂ MeSiR ^c
1	1		-	$-13.0^{a}(-16.52)^{b}$	<i>ansa</i> Si
MCM-41 ^d	-93.4	-101.8	-110.8	-	-
				5.2	M ^{Cl}
2	-	-107.2^{e}		-6.9	\mathbf{D}^1
				-15.7	<i>ansa</i> Si
MCM-41 ¹⁷	-92	-101	-110	-	-
MCM-41-TMS ¹⁷	-92	-101	-110	14	М
SBA-15 ^d	-93.7	-102.9	-110.0	-	
		-101.4	-108.0	4.8	M ^{Cl}
3	-			-7.0	D^1
				-12.9	<i>ansa</i> Si
SBA-15 ⁶⁷	-92	-101	-110	-	-
MCM-48 ^d	-94.7	-101.4	-112.6	-	
				7.5	M ^{Cl}
4	-	-10-	4.4 ^e	-6.8	\mathbf{D}^1
				-13.6	<i>ansa</i> Si
MCM-48 ⁷¹	-91.3	-100.6	-109.6	-	-
DMS ^d	DMS^{d} 02.0 104.4	-11/ 6	-65.3	T^2_2	
DNIS	-75.7	-104.4	-114.0	-73.7	T ³
		-102.6	-106.7	7.7, 4.7	M
5	_			-7.0, -8.8	D^1
J	-			-13.7	ansa Si
				-18.0, -19.5	D^2
Cvanoethyl-HMS ³⁵	-96.4	-102.0	-109.8	-63.1	T^2_{2}
	70.4	102.0	-109.8	-68.7	Τ3
amorphous silica ^a	-91.9	-100.9	-108.3	-	-
6	-	-101.9	-107.6	3.1	M
				-6.8	D^1
				-14.0	ansa Si
				-18.2	D^2
silica gel ^{20,28}	-90.6	-99.8	-109.3	-	-
silica gel-TMS ^{27,38}	-91	-100	-109	13	M
silica gel-Me ₂ SiCl ₂ ^{57,61}		-100	-109	9.4	M
	-91			-4.1	D_{2}^{i}
				-14.2	D^2

 Table 2
 ²⁹Si chemical shifts for materials studied and comparative literature materials

^a solid-state ²⁹Si CP MAS, as for heterogenised Zc, 75 MHz; ^b solution ²⁹Si NMR, 56 MHz, in CD₂Cl₂; ^c $R = (CH_2)_3Si(C_9H_6)_2ZrCl_2$; ^d this work; ^e convoluted Q³ and Q⁴ peaks not possible to assign separately.

 13 C CP MAS NMR experiments were carried out on the five supported zirconocenes 2 - 6, and the resulting spectra are shown in Figs. 1 - 5.

Fig. 1 13 C CP MAS NMR spectrum of 2 (Et₃N peaks are marked with asterisks)

Fig. 2 13 C CP MAS NMR spectrum of 3 (Et₃N peaks are marked with asterisks)

Fig. Error! No text of specified style in document. ¹³C CP MAS NMR spectrum of **4** (Et₃N peaks are marked with asterisks)

Fig. 4¹³C CP MAS NMR spectrum of 5 (Et₃N peaks are marked with asterisks)

Fig. 5 13 C CP MAS NMR spectrum of **6** (Et₃N peaks are marked with asterisks)

Compound/Material	¹³ C chen	nical sh	ift (ppm)	Assignment
	135.00 128.36		127.39 126.48	q, Ind
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		125.98	CH Ind
Cl ₂ MeSi Si Zr Cl	119.98 119.81		119.81	CH 'Cp' Ind
	90.05			q, 'Cp' Ind (<i>ipso</i>)
	25.64	18.23	17.22	CH ₂
•	5.46			Cl ₂ MeSi-
1 ^a	-5.51			SiMe (ansa)
	145.6 133.9		129.1 123.6	Ind
2	24.2	20.9	17.9	CH ₂
	0.6		-1.5	SiMe
3	144.6	135.5	123.5	Ind
	30.6	24.6	17.7	CH ₂
		-2.0		SiMe
	144.4	129.5	123.8	Ind
4	16.9			CH ₂
	1447	-0.8	100.7	SiMe
5	144./	133.5	123./	
5	21.8 17.7			
				Ind
6	23.0		193	CH2
Ū .	1.6		-2.0	SiMe
	129.8 128.2 116.0 1109.3 Cp		114.0	
\square			Ср	
	10.5			-CH ₂ SiMe ₂ Cl
	2.8			SiMe ₂
Collins <i>et al</i> . ^{15,b}	1.1			-CH ₂ SiMeCp ₂ ZrCl ₂
	-7.7			SiMe (ansa)
	128.0		112.0	Ср
	9.8		7.4	CH ₂
$\frac{1}{10000000000000000000000000000000000$	2.6			OSiMe ₂
		-9.6		SiMe (ansa)

 Table 3
 ¹³C NMR chemical shifts and proposed assignments for 1 and supported zirconocenes 2 - 6 and related compounds of interest (spectra were recorded at 100 MHz unless otherwise stated)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

 a data recorded at 75 MHz in solution (CD₂Cl₂); b data recorded at 75 MHz in solution (CDCl₃); c data recorded at 125 MHz (CP MAS).

50 µm

2 (MCM-41 host)

3 (SBA-15 host)

4 (MCM-48 host)

5 (DMS host)

50 µm

SEM micrographs (× 900 magnification) of polyethylenes (catalysts named below):

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

1

7

SEM micrographs (× 900 magnification) of polypropylenes (catalysts named below):

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

> 2 (MCM-41 host) 3 (SBA-15 host)

6 (SiO₂ host)

1

7