A new fluoride selective electrochemical and fluorescent chemosensor based on a ferrocene-naphthalene dyad.

Francisco Otón, Alberto Tárraga*, María D. Velasco, Arturo Espinosa and Pedro Molina*,

Electronic Supplementary Information (ESI)

Spectroscopic data of compound 1.

IR (CH₂Cl₂) v_{max} 3360, 3263, 1665, 1600, 1493, 1374, 1067, 1035, 852, 804, 750 cm⁻¹. ¹H NMR (DMSO-d₆): $\delta = 8.48$ (s, 2H, *NH*-napht.), 7.72 (m, 4H, *NH*-Fc + *H*₄ napht.), 7.43 (t, 2H, *J* = 7.0 Hz, *H*₃ napht.), 7.25 (d, 2H, *J* = 7.0 Hz, *H*₂ napht.), 4.89 (bs, 2H, *Fc*), 4.08 (bs, 2H, *Fc*), 3.81 (bs, 4H, *Fc*). ¹³C NMR (DMSO-d₆): δ 153.80 (C=O), 135.68 (q), 134.00 (q), 125.68 (CH), 125.17 (CH), 124.41 (CH), 97.74 (q, Fc), 63.27 (CH, Fc), 62.15 (CH, Fc), 60.95 (CH, Fc), 57.94 (CH, Fc). MS (EI): *m/z* (%): 426 (M⁺, 100), 399 (3), 268 (100), 158 (54). Anal Calcd for C₂₂H₁₈FeN₄O₂: C, 61.99; H, 4.26; N, 13.14. Found: C, 61.74; H, 4.30; N, 13.38.

Computational details.- Calculations were performed at the DFT level of theory, which has been widely recommended as a practical and effective tool for organometallic compounds, especially for reproducing experimental ground-state geometries and rotational barriers for ferrocenes¹, and were based on the Spartan'02 (build 119, Wavefunction Inc., Irvine, CA) program system. Prior to the final DFT *ab initio*

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2004

calculation, a full conformational search was performed at the semiempirical PM3(d) level until local minima (all real frequencies) were found, as verified by harmonic frequency calculations. The obtained geometry for the $1.2F^{-}$ complex was thereafter fully optimized (Figure I) by using the B3LYP functional and the all-electron moderate size 3-21G(d) basis set.

Figure S1. Calculated structure (B3LYP/3-21G*) for the complex $1.2F^{-}$. Fluorine atoms are represented as green-yellow balls.

Supplementary Material (ESI) for Chemical Communications

This journal is $\mathbb O$ The Royal Society of Chemistry 2004

General Electrochemistry

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2004

Figure S2. Cyclic voltammograms for the recognition of anions: Solvent : DMSO ; reference electrode : aqueous SCE; working and counter electrode: Pt; supporting electrolyte: 0.1 M [n-Bu₄N]]PF₆] ; scan rate: 100 mVs⁻¹. Samples 1 mM of **1** : (a) with [n-Bu₄N][F] ; (b) with [n-Bu₄N][H₂PO₄] and (c) with [n-Bu₄N][Cl]

Fluorescence:

Figure S3. Changes in the emission spectra of **1** in the region 362-380 nm as a function of equivalents of anion added

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

Evolution of the ¹H-NMR spectra upon addition of the appropriate anion

Figure S4. The changes ¹H NMR (300 MHz, DMSO- d_6) in NH-naphtalene protons of **1** upon titration with F⁻.

This journal is $\mathbb O$ The Royal Society of Chemistry 2004

Figure S5. The changes ¹H NMR (300 MHz, DMSO- d_6) in NH protons of **1** upon titration with $H_2PO_4^-$: NH-naphtalene (red square); NH-ferrocene (green

Figure S6. Evolution of the ¹H NMR spectra of **1** upon addition of increasing amounts of F⁻ anion: (a) **1**; (b) **1** + 0.5 eq F⁻; (c) **1** + 1 eq F⁻; (d) **1** + 1.5 eq F⁻; (e) **1** + 2 eq F⁻; (f) **1** + 2.5 eq F⁻.

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is \mathbbm{C} The Royal Society of Chemistry 2004

d e

Figure S7. Evolution of the ¹H NMR spectra of **1** upon addition of increasing amounts of $H_2PO_4^-$ anion: (a) **1**; (b) **1** + 0.25 eq $H_2PO_4^-$; (c) **1** + 0.5 eq $H_2PO_4^-$; (d) **1** + 0.75 eq $H_2PO_4^-$; (e) **1** + 1 eq $H_2PO_4^-$.

References.-

For instance see: A. Tárraga, F. Otón, A. Espinosa, M.D. Velasco, P. Molina, D.J. Evans; *Chem. Commun.*, 2004, 458-459.