Supporting Information

For

Mixed Metal Bis(μ -oxo) Complexes with [CuM(μ -O)₂]ⁿ⁺ (M = Ni(III) or Pd(II)) Cores

Nermeen W. Aboelella,^{*a*} John T. York,^{*a*} Anne M. Reynolds,^{*a*} Koyu Fujita,^{*b*} Christopher R. Kinsinger,^{*a*} Christopher J. Cramer,^{*a*,*} Charles G. Riordan,^{*b*,*} and William B. Tolman^{*a*,*}

^aDepartment of Chemistry, Center for Metals in Biocatalysis, and Supercomputer Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota, 55455, and ^bDepartment of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Experimental Details

General Considerations. All reagents were obtained from commercial sources and used as received unless stated otherwise. The solvents tetrahydrofuran (THF), diethyl ether (Et₂O), pentane, and toluene were distilled from Na/benzophenone or passed through solvent purification columns (Glass Contour, Laguna, CA). Dichloromethane (CH₂Cl₂) was distilled from calcium hydride or purified by passing through a solvent purification column. Labeled dioxygen was purchased from Cambridge Isotopes, Inc. or Icon Isotopes, Inc. All metal complexes were prepared and stored in a Vacuum Atmospheres inert atmosphere glove box under a dry nitrogen atmosphere or were manipulated using standard Schlenk techniques. The compounds, $[H(Me_2L^{iPr2})Cu(MeCN)]$,¹ $[H(Me_2L^{Me2})Cu(MeCN)]$ (4),² (PPh₃)₂PdO₂ (5),³ and PhTt^{tBu}Ni(CO)⁴ (2) were prepared as reported previously.

Physical Methods. NMR spectra were recorded on a Varian VI-300 or VXR-300 spectrometer. Chemical shifts (δ) for ¹H or ¹³C NMR spectra were referenced to residual protium in the deuterated solvent, and for ³¹P NMR spectra were referenced to external 85% H₃PO₄ in H₂O. UV-vis spectra were recorded on a HP8453 (190-1100 nm) diode array spectrophotometer. Low-temperature spectra were acquired using a custom manufactured vacuum dewar equipped with quartz windows, with low temperatures achieved with the use of a low-temperature MeOH bath circulator. X-band EPR spectra were recorded on a Bruker E-500 spectrometer, with an Oxford Instruments EPR-10 liquid helium cryostat (2-65K, 9.61 GHz). Quantitation of EPR signal intensity was achieved by comparing the double integration of the derivative spectrum to that of [H(Me₂L^{iPr2})CuCl]⁵ in 1:1 CH₂Cl₂/toluene. Resonance Raman spectra were collected on an Acton 506 spectrometer using a Princeton Intstruments LN/CCD-1100-PB/UVAR detector and ST-1385 controller interfaced with Winspec software. A Spectra-Physics 2030-15 argon laser was used to excite at 457.9 nm. The power was between 60-200 mW. The spectra were obtained at –196 °C (77K) using a backscattering geometry; samples were frozen in a teflon cup or a copper cup attached to a liquid-nitrogen cooled cold-finger. Raman shifts were externally referenced to liquid indene.

 $(PPh_3)_2Pd^{18}O_2$. A method adapted from the reported procedure for $(PPh_3)_2Pd^{16}O_2$ was used.³ In an inert atmosphere, a 50 mL Schlenk flask was charged with a suspension of $Pd(PPh_3)_4$ (100 mg, 8.65 x 10⁻⁵ mol) in Et₂O (20 mL). The suspension was frozen at -196 °C, the headspace evacuated, and ¹⁸O₂ transferred into the flask. Warming to ambient temperature and stirring for 15 min resulted in deposition of a green solid, which was collected, washed with Et₂O (20 mL), and dried *in vacuo* (42 mg, 72%). FTIR: $v(^{18}O^{-18}O) = 828 \text{ cm}^{-1} (\Delta^{16}O_2 - ^{18}O_2 = 48 \text{ cm}^{-1})$. UV-vis Experiments. [H(Me₂L^{iPr2})Cu(O₂)] (1) + PhTt^{tBu}Ni(CO) (2). In a typical

UV-vis Experiments. $[H(Me_2L^{iPr2})Cu(O_2)]$ (1) + PhTt^{tBu}Ni(CO) (2). In a typical experiment, $[H(Me_2L^{iPr2})Cu(O_2)]$ (1) was prepared in situ by oxygenating a THF solution of $[H(Me_2L^{iPr2})Cu(MeCN)]$ at -80 °C in a UV cell. After complete formation of

¹ Spencer, D. J. E., Aboelella, N. W.; Reynolds, A. M.; Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. **2002**, *124*, 2108.

² Spencer, D. J. E.; Reynolds, A. M.; Holland, P. L.; Jazdzewski, B. A.; Duboc-Toia, C.; Le

Pape, L.; Yokota, S.; Tachi, Y.; Itoh, S.; Tolman, W. B. Inorg. Chem. 2002, 41, 6307.

³ Nyman, C. J.; Wymore, C. E.; Wilkinson, G. J. Chem. Soc. (A) **1968**, 561.

⁴ Scebler, P. J.; Mandimutsira, B. S.; Riordan, C. G.; Liable-Sands, L. M.; Incarvito, C. D.;

Rheingold, A. L. J. Am. Chem. Soc., 2001, 123, 331.

⁵ Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270.

[H(Me₂L^{iPr2})Cu(O₂)] (monitored by UV-vis spectroscopy), excess O₂ was removed by evacuating and purging the UV-vis cell several times with N₂ and then bubbling argon through the solution for approximately 20 min while maintaining a temperature of -80 °C. The UV-vis spectrum was then recorded in order to confirm that no degradation of the spectral features had occurred. One equivalent of PhTt^{tBu}Ni(CO) was then injected via syringe, and product formation was monitored at -80 °C over ~ 1 d. Final mixed concentrations (assuming dimer formation) were between 0.6-1.0 mM. Exctinction coefficients are reported per complex (assuming dimer formation). λ_{max} , nm (ϵ , M⁻¹cm⁻¹): 440 (br, 8500), 498 (8300).

 $(PPh_3)_2PdO_2$ (5) + $[H(Me_2L^{Me2})Cu(NCCH_3)]$ (4). In an inert atmosphere glovebox, a 4 mL sample of a stock solution of $(PPh_3)_2PdO_2$ (5) in THF (0.2 mM) was placed in a UV cuvette, which was removed from the box and cooled to -80 °C. An initial spectrum was recorded to verify the starting material (shoulder at 335 nm).⁶ A sample from a stock solution (0.2 mM) of $[H(Me_2L^{Me2})Cu(NCCH_3)]$ (4) in THF (1 equiv) was injected, resulting in an immediate color change to dark yellow-brown and the appearance of new absorption bands: λ_{max} , nm (ϵ , M⁻¹cm⁻¹): 448 (5900), 600 (sh, 450). A spectrophotometric titration was performed according to a similar protocol, using 0.25-2.0 equiv of Cu(I) reagent and monitoring at 448 nm (Figure S1).

Resonance Raman, EPR, and NMR Experiments. Similar protocols to those used in the UV-vis experiments were followed, except final concentrations were 1.0 mM (EPR, NMR) or ~10 mM (Raman) and solutions were prepared in the appropriate sample containers (teflon cup or coldfinger/Cu cup for Raman, quartz tubes for EPR and NMR).

Figure S1. Plot showing results of spectrophotometric titration of $(PPh_3)_2PdO_2$ (5) with $[H(Me_2L^{Me2})Cu(NCCH_3)]$ (4) in THF at -80 °C.

⁶ Deal, D.; Zink, J.I. Inorg. Chem. 1981, 20, 3995.

Figure S2. EPR spectra of the solution obtained upon mixing [H(Me₂L^{iPr2})Cu(O₂)] (1) and PhTt^{tBu}Ni(CO) (2) at -80 °C. Left: Solid black line is same as shown in Figure 1b, and dashed red line is of the solution resulting after warming to room temperature. Right: Overlay of spectra obtained at various microwave powers. All spectra obtained at 2K, 9.6 GHz.

Figure S3. X-ray crystal structure of (PPh₃)₂PdO₂ (**5**), with all nonhydrogen atoms shown as 50% thermal ellipsoids.

Figure S4. ¹H NMR spectrum of $(PPh_3)_2Pd(\mu-O)_2Cu[H(Me_2L^{Me2})]$ (6) (THF-d⁸, -80 °C). The peaks labeled with * are from the solvent.

Figure S5. Calculated structure of $(PPh_3)_2Pd(\mu-O)_2Cu[H(Me_2L^{Me2})]$ (6). Calculations Details

The molecular geometry of **6** was fully optimized at the density functional level of theory (DFT) using the exchange and correlation functionals of Perdew and co-workers^{7,8} as modified by Adamo and Barone (*m*PWPW91).⁹ Atomic orbital basis functions were taken for Cu and Pd from the Stuttgart/Dresden relativistic effective core potential basis SDD,¹⁰ for N, O, and P from the 6-311G* basis, for C from the 6-31G basis, and for H from the minimal STO-3G basis.¹¹ Calculations employed the Gaussian 03 electron structure program suite.¹²

Optimized cartesian coordinates (Å)

Cu,0,2.5327510324,0.,0.

Pd,0,-0.4612346066,0.,0.

O,0,1.1526697599,1.2296062139,0.0060479793

O,0,1.1526697599,-1.2296062139,-0.0060479793

N,0,3.8584025034,1.4253832583,-0.1499380554

N,0,3.8584025034,-1.4253832583,0.1499380554

C,0,5.1924349795,1.2492694925,-0.170821499

C,0,5.1924349795,-1.2492694925,0.170821499

⁷ Perdew, J. & Wang, Y. (1992) *Phys. Rev. B* **45**, 13244-13249.

⁸ Burke, K., Perdew, J. P. & Wang, Y. (1998) in *Electronic Density Functional Theory. Recent Progress and New Directions*, eds. Dobson, J. F., Vignale, G. & Das, M. P. (Plenum Press, New York), pp. 81-121.

⁹ Adamo, C. & Barone, V. (1998) J. Chem. Phys. 108, 664-675.

¹⁰ Dolg, M. (2002) Theor. Comput. Chem. 11, 793.

¹¹ Hehre, W. J., Radom, L., von Schleyer, P. R. & Pople, J. A. (1986) *Ab Initio Molecular Orbital Theory* (Wiley, New York).

¹² Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2003) *Gaussian 03 (Revision B.01)* (Gaussian, Inc., Pittsburgh, PA).

C,0,5.8214825638,0.,0. C,0,3.337715119,2.7581541776,-0.2282947789 C,0,3.337715119,-2.7581541776,0.2282947789 C,0,3.2601583134,3.5399042218,0.9556260989 C,0,3.2601583134,-3.5399042218,-0.9556260989 C,0,2.9150297943,3.2765487088,-1.4808192027 C,0,2.9150297943,-3.2765487088,1.4808192027 C.0.2.7947347539.4.865332416.0.8592664869 C,0.2.7947347539,-4.865332416,-0.8592664869 C,0,2.4590019724,4.607590987,-1.5372117142 C,0,2.4590019724,-4.607590987,1.5372117142 C,0,2.4032478601,5.4011730364,-0.379382171 C,0,2.4032478601,-5.4011730364,0.379382171 P,0,-1.8235143818,1.8809109776,0.1250639667 P,0,-1.8235143818,-1.8809109776,-0.1250639667 H,0,6.9130962662,0.,0. C,0.6.0988199279,2.45541882,-0.3991714856 C,0,6.0988199279,-2.45541882,0.3991714856 C,0,3.664024652,2.9468415316,2.2894470997 C,0,3.664024652,-2.9468415316,-2.2894470997 C,0,2.9457839654,2.4046669539,-2.7161629368 C,0,2.9457839654,-2.4046669539,2.7161629368 H,0,2.730697033,5.4754959159,1.7669937209 H,0,2.730697033,-5.4754959159,-1.7669937209 H,0,2.1303687471,5.015702398,-2.4989782789 H,0,2.1303687471,-5.015702398,2.4989782789 H,0,2.0417339817,6.4335210072,-0.4394589112 H,0,2.0417339817,-6.4335210072,0.4394589112 C,0,-3.6730606159,1.8320006766,0.2224189628 C,0,-3.6730606159,-1.8320006766,-0.2224189628 C,0,-1.4577562464,2.9252486909,1.6151266549 C,0,-1.4577562464,-2.9252486909,-1.6151266549 C,0,-1.5220194464,2.9725971369,-1.3350000441 C,0,-1.5220194464,-2.9725971369,1.3350000441 C,0,-4.2602052129,1.164311021,1.3246109173 C,0,-4.5132524036,2.4805898314,-0.7103118061 C,0,-5.6519335533,1.1708390375,1.5040882697 C,0,-5.9096420497,2.4795694938,-0.5308851685 C,0,-6.4811530679,1.8332814586,0.5782449587 H,0,-3.6186341673,0.6470540071,2.0487622446 H,0,-4.0768886398,2.9990605956,-1.5700980044 H,0,-6.0897498918,0.6537666163,2.3643453528 H.0.-6.5479637883.2.9929504075.-1.258631919 H,0,-7.5673764936,1.8398313151,0.7205956582 C,0,-4.2602052129,-1.164311021,-1.3246109173 C,0,-4.5132524036,-2.4805898314,0.7103118061

C,0,-5.6519335533,-1.1708390375,-1.5040882697 C,0,-5.9096420497,-2.4795694938,0.5308851685 C,0,-6.4811530679,-1.8332814586,-0.5782449587 H,0,-3.6186341673,-0.6470540071,-2.0487622446 H,0,-4.0768886398,-2.9990605956,1.5700980044 H,0,-6.0897498918,-0.6537666163,-2.3643453528 H,0,-6.5479637883,-2.9929504075,1.258631919 H,0,-7.5673764936,-1.8398313151,-0.7205956582 C,0,-2.4098895514,3.8339772551,2.139863512 C,0,-0.2027724429,2.7921585738,2.2536671059 C,0,-2.1129833966,4.5923878945,3.2854250832 C,0,0.0809304857,3.5480467797,3.405823574 C,0,-0.8689282967,4.4455670188,3.9257569075 H,0,-3.3910669138,3.9380521273,1.6643219267 H,0,0.5399984198,2.1089946091,1.8124260078 H,0,-2.8591298763,5.2900459994,3.6816880394 H,0,1.0513843341,3.430444785,3.899298176 H,0,-0.6426455232,5.0276485783,4.8262964507 C,0,-2.4098895514,-3.8339772551,-2.139863512 C,0,-0.2027724429,-2.7921585738,-2.2536671059 C,0,-2.1129833966,-4.5923878945,-3.2854250832 C,0,0.0809304857,-3.5480467797,-3.405823574 C,0,-0.8689282967,-4.4455670188,-3.9257569075 H,0,-3.3910669138,-3.9380521273,-1.6643219267 H,0,0.5399984198,-2.1089946091,-1.8124260078 H,0,-2.8591298763,-5.2900459994,-3.6816880394 H,0,1.0513843341,-3.430444785,-3.899298176 H,0,-0.6426455232,-5.0276485783,-4.8262964507 C,0,-1.6572090832,4.3784161546,-1.2817873741 C,0,-1.182985367,2.3579787547,-2.5624968381 C,0,-1.4802621483,5.1517762064,-2.4425272919 C,0,-1.0125265685,3.1335832725,-3.7227161857 C,0,-1.1653907119,4.5312512662,-3.665925615 H,0,-1.890047319,4.8685415355,-0.3300848595 H,0,-1.0299227435,1.2706693669,-2.5897797996 H,0,-1.583375361,6.24116164,-2.3891403245 H,0,-0.7483332514,2.6449858094,-4.6672665361 H,0,-1.0292071623,5.1360383866,-4.5695211137 C,0,-1.6572090832,-4.3784161546,1.2817873741 C,0,-1.182985367,-2.3579787547,2.5624968381 C,0,-1.4802621483,-5.1517762064,2.4425272919 C,0,-1.0125265685,-3.1335832725,3.7227161857 C.0.-1.1653907119.-4.5312512662.3.665925615 H,0,-1.890047319,-4.8685415355,0.3300848595 H,0,-1.0299227435,-1.2706693669,2.5897797996 H,0,-1.583375361,-6.24116164,2.3891403245

H,0,-0.7483332514,-2.6449858094,4.6672665361 H,0,-1.0292071623,-5.1360383866,4.5695211137 H,0,5.8524528794,2.9527922501,-1.3559476031 H,0,5.9753261136,3.2139510421,0.3949227809 H,0,7.1560718485,2.1458188211,-0.4272122914 H,0,5.8524528794,-2.9527922501,1.3559476031 H,0,5.9753261136,-3.2139510421,-0.3949227809 H,0,7.1560718485,-2.1458188211,0.4272122914 H,0,3.0920737207,2.0182326708,2.48789847 H,0,4.7339917732,2.6647540295,2.3169786156 H,0,3.4798425985,3.6595448962,3.1106222809 H,0,2.2554626116,1.5473476416,-2.579150455 H,0,2.6286664958,2.9689354119,-3.6087611491 H,0,3.9518508886,1.9829179378,-2.9032225541 H,0,3.0920737207,-2.0182326708,-2.48789847 H,0,4.7339917732,-2.6647540295,-2.3169786156 H,0,3.4798425985,-3.6595448962,-3.1106222809 H,0,2.2554626116,-1.5473476416,2.579150455 H,0,2.6286664958,-2.9689354119,3.6087611491 H,0,3.9518508886,-1.9829179378,2.9032225541