Supplementary Material for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

Supporting Information

For

Mixed Metal Bis(μ-oxo) Complexes with $\left[\mathrm{CuM}(\mu-\mathrm{O})_{2}\right]^{\mathrm{n+}}(\mathrm{M}=\mathrm{Ni}(\mathrm{III})$ or $\mathrm{Pd}(\mathrm{II}))$

 CoresNermeen W. Aboelella, ${ }^{a}$ John T. York, ${ }^{a}$ Anne M. Reynolds, ${ }^{a}$ Koyu Fujita, ${ }^{b}$ Christopher R. Kinsinger, ${ }^{a}$ Christopher J. Cramer, ${ }^{a, *}$ Charles G. Riordan, ${ }^{b, *}$ and William B. Tolman ${ }^{a, *}$
${ }^{a}$ Department of Chemistry, Center for Metals in Biocatalysis, and Supercomputer Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota, 55455, and ${ }^{b}$ Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Experimental Details

General Considerations. All reagents were obtained from commercial sources and used as received unless stated otherwise. The solvents tetrahydrofuran (THF), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), pentane, and toluene were distilled from Na /benzophenone or passed through solvent purification columns (Glass Contour, Laguna, CA). Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from calcium hydride or purified by passing through a solvent purification column. Labeled dioxygen was purchased from Cambridge Isotopes, Inc. or Icon Isotopes, Inc. All metal complexes were prepared and stored in a Vacuum Atmospheres inert atmosphere glove box under a dry nitrogen atmosphere or were manipulated using standard Schlenk techniques. The compounds, $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{iPr} 2}\right) \mathrm{Cu}(\mathrm{MeCN})\right],{ }^{1}\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{Me} 2}\right) \mathrm{Cu}(\mathrm{MeCN})\right](4),{ }^{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdO}_{2}(5),{ }^{3}$ and $\mathrm{PhTt}{ }^{\mathrm{Bu}} \mathrm{Ni}(\mathrm{CO})^{4}$ (2) were prepared as reported previously.

Physical Methods. NMR spectra were recorded on a Varian VI-300 or VXR-300 spectrometer. Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR spectra were referenced to residual protium in the deuterated solvent, and for ${ }^{31} \mathrm{P}$ NMR spectra were referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ in $\mathrm{H}_{2} \mathrm{O}$. UV-vis spectra were recorded on a HP8453 (190-1100 nm) diode array spectrophotometer. Low-temperature spectra were acquired using a custom manufactured vacuum dewar equipped with quartz windows, with low temperatures achieved with the use of a low-temperature MeOH bath circulator. X-band EPR spectra were recorded on a Bruker E-500 spectrometer, with an Oxford Instruments EPR-10 liquid helium cryostat ($2-65 \mathrm{~K}, 9.61 \mathrm{GHz}$). Quantitation of EPR signal intensity was achieved by comparing the double integration of the derivative spectrum to that of $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{iPr}}\right) \mathrm{CuCl}\right]^{5}$ in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene. Resonance Raman spectra were collected on an Acton 506 spectrometer using a Princeton Intstruments LN/CCD-1100-PB/UVAR detector and ST-1385 controller interfaced with Winspec software. A Spectra-Physics 2030-15 argon laser was used to excite at 457.9 nm . The power was between $60-200 \mathrm{~mW}$. The spectra were obtained at $-196{ }^{\circ} \mathrm{C}(77 \mathrm{~K})$ using a backscattering geometry; samples were frozen in a teflon cup or a copper cup attached to a liquid-nitrogen cooled cold-finger. Raman shifts were externally referenced to liquid indene.
$\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{P d}^{18} \mathbf{O}_{2}$. A method adapted from the reported procedure for $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pd}^{16} \mathrm{O}_{2}$ was used. ${ }^{3}$ In an inert atmosphere, a 50 mL Schlenk flask was charged with a suspension of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(100 \mathrm{mg}, 8.65 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The suspension was frozen at $-196^{\circ} \mathrm{C}$, the headspace evacuated, and ${ }^{18} \mathrm{O}_{2}$ transferred into the flask. Warming to ambient temperature and stirring for 15 min resulted in deposition of a green solid, which was collected, washed with $\mathrm{Et}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$, and dried in vacuo ($42 \mathrm{mg}, 72 \%$). FTIR: $v\left({ }^{18} \mathrm{O}-{ }^{18} \mathrm{O}\right)=828 \mathrm{~cm}^{-1}\left(\Delta^{16} \mathrm{O}_{2}{ }^{-18} \mathrm{O}_{2}=48 \mathrm{~cm}^{-1}\right)$.

UV-vis Experiments. [$\left.\mathbf{H}\left(\mathrm{Me}_{2} \mathbf{L}^{\mathrm{iPr} 2}\right) \mathbf{C u}\left(\mathrm{O}_{2}\right)\right]$ (1) $+\mathrm{PhTt}^{\mathrm{tBu}} \mathbf{N i}(\mathbf{C O})$ (2). In a typical experiment, $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{iPr} 2}\right) \mathrm{Cu}\left(\mathrm{O}_{2}\right)\right]$ (1) was prepared in situ by oxygenating a THF solution of $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{Pr2}}\right) \mathrm{Cu}(\mathrm{MeCN})\right]$ at $-80{ }^{\circ} \mathrm{C}$ in a UV cell. After complete formation of

[^0]Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
$\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{iPr} 2}\right) \mathrm{Cu}\left(\mathrm{O}_{2}\right)\right]$ (monitored by UV-vis spectroscopy), excess O_{2} was removed by evacuating and purging the UV-vis cell several times with N_{2} and then bubbling argon through the solution for approximately 20 min while maintaining a temperature of $-80{ }^{\circ} \mathrm{C}$. The UV -vis spectrum was then recorded in order to confirm that no degradation of the spectral features had occurred. One equivalent of $\mathrm{PhTt}^{t \mathrm{Bu}} \mathrm{Ni}(\mathrm{CO})$ was then injected via syringe, and product formation was monitored at $-80{ }^{\circ} \mathrm{C}$ over $\sim 1 \mathrm{~d}$. Final mixed concentrations (assuming dimer formation) were between $0.6-1.0 \mathrm{mM}$. Exctinction coefficients are reported per complex (assuming dimer formation). $\lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 440(\mathrm{br}, 8500), 498$ (8300).
$\left(\mathbf{P P h}_{3}\right)_{2} \mathbf{P d O}_{\mathbf{2}} \mathbf{(5)}+\left[\mathbf{H}_{\left(\mathbf{M e}_{2} \mathbf{L}^{\mathrm{Me}} \mathbf{)} \mathbf{)} \mathbf{C u}\left(\mathbf{N C C H}_{3}\right)\right] \text { (4). In an inert atmosphere glovebox, a } 4}\right.$ mL sample of a stock solution of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdO}_{2}(\mathbf{5})$ in THF $(0.2 \mathrm{mM})$ was placed in a UV cuvette, which was removed from the box and cooled to $-80^{\circ} \mathrm{C}$. An initial spectrum was recorded to verify the starting material (shoulder at 335 nm). ${ }^{6}$ A sample from a stock solution $(0.2 \mathrm{mM})$ of $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{Me} 2}\right) \mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)\right]$ (4) in THF (1 equiv) was injected, resulting in an immediate color change to dark yellow-brown and the appearance of new absorption bands: $\lambda_{\max }, \mathrm{nm}\left(\varepsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-}\right.$ $\left.{ }^{1}\right): 448$ (5900), $600(\mathrm{sh}, 450)$. A spectrophotometric titration was performed according to a similar protocol, using 0.25-2.0 equiv of $\mathrm{Cu}(\mathrm{I})$ reagent and monitoring at 448 nm (Figure S 1).

Resonance Raman, EPR, and NMR Experiments. Similar protocols to those used in the UV-vis experiments were followed, except final concentrations were 1.0 mM (EPR, NMR) or $\sim 10 \mathrm{mM}$ (Raman) and solutions were prepared in the appropriate sample containers (teflon cup or coldfinger/ Cu cup for Raman, quartz tubes for EPR and NMR).

Figure S1. Plot showing results of spectrophotometric titration of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdO}_{2}(\mathbf{5})$ with $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{Me}}\right) \mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)\right](4)$ in THF at $-80^{\circ} \mathrm{C}$.

[^1]
Supplementary Material for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

Figure S2. EPR spectra of the solution obtained upon mixing $\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{iPr}}\right) \mathrm{Cu}\left(\mathrm{O}_{2}\right)\right](\mathbf{1})$ and $\mathrm{PhTt}^{\mathrm{EBu}} \mathrm{Ni}(\mathrm{CO})(2)$ at $-80^{\circ} \mathrm{C}$. Left: Solid black line is same as shown in Figure 1 b , and dashed red line is of the solution resulting after warming to room temperature. Right: Overlay of spectra obtained at various microwave powers. All spectra obtained at $2 \mathrm{~K}, 9.6 \mathrm{GHz}$.

Figure S3. X-ray crystal structure of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdO}_{2}$ (5), with all nonhydrogen atoms shown as 50% thermal ellipsoids.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2004

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pd}(\mu-\mathrm{O})_{2} \mathrm{Cu}\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{Me} 2}\right)\right](6)\left(\mathrm{THF}-\mathrm{d}^{8},-80^{\circ} \mathrm{C}\right)$. The peaks labeled with * are from the solvent.

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Figure S5. Calculated structure of $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pd}(\mu-\mathrm{O})_{2} \mathrm{Cu}\left[\mathrm{H}\left(\mathrm{Me}_{2} \mathrm{~L}^{\mathrm{Me}}\right)\right]$ (6).

Calculations Details

The molecular geometry of $\mathbf{6}$ was fully optimized at the density functional level of theory (DFT) using the exchange and correlation functionals of Perdew and co-workers ${ }^{7,8}$ as modified by Adamo and Barone (m PWPW91). ${ }^{9}$ Atomic orbital basis functions were taken for Cu and Pd from the Stuttgart/Dresden relativistic effective core potential basis $\operatorname{SDD},{ }^{10}$ for N, O, and P from the $6-311 \mathrm{G}^{*}$ basis, for C from the $6-31 \mathrm{G}$ basis, and for H from the minimal STO-3G basis. ${ }^{11}$ Calculations employed the Gaussian 03 electron structure program suite. ${ }^{12}$

> Optimized cartesian coordinates (\AA)
> Cu,0,2.5327510324,0.,0.
> Pd,0,--0.4612346066,0.,0.
> $0,0,1.1526697599,1.2296062139,0.0060479793$
> $0,0,1.1526697599,-1.2296062139,-0.0060479793$
> $\mathrm{~N}, 0,3.8584025034,1.4253832583,-0.1499380554$
> $\mathrm{~N}, 0,3.8584025034,-1.4253832583,0.1499380554$
> $\mathrm{C}, 0,5.1924349795,1.2492694925,-0.170821499$
> $\mathrm{C}, 0,5.1924349795,-1.2492694925,0.170821499$
${ }^{7}$ Perdew, J. \& Wang, Y. (1992) Phys. Rev. B 45, 13244-13249.
${ }^{8}$ Burke, K., Perdew, J. P. \& Wang, Y. (1998) in Electronic Density Functional Theory. Recent Progress and New Directions, eds. Dobson, J. F., Vignale, G. \& Das, M. P. (Plenum Press, New York), pp. 81-121.
${ }^{9}$ Adamo, C. \& Barone, V. (1998) J. Chem. Phys. 108, 664-675.
${ }^{10}$ Dolg, M. (2002) Theor. Comput. Chem. 11, 793.
${ }^{11}$ Hehre, W. J., Radom, L., von Schleyer, P. R. \& Pople, J. A. (1986) Ab Initio Molecular Orbital Theory (Wiley, New York).
${ }^{12}$ Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. \& Pople, J. A. (2003) Gaussian 03 (Revision B.01) (Gaussian, Inc., Pittsburgh, PA).

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

C,0,5.8214825638,0.,0.
C,0,3.337715119,2.7581541776,-0.2282947789
C,0,3.337715119,-2.7581541776,0.2282947789
С,0,3.2601583134,3.5399042218,0.9556260989
С,0,3.2601583134,-3.5399042218,-0.9556260989
C,0,2.9150297943,3.2765487088,-1.4808192027
C,0,2.9150297943,-3.2765487088,1.4808192027
C,0,2.7947347539,4.865332416,0.8592664869
С,0,2.7947347539,-4.865332416,-0.8592664869
C,0,2.4590019724,4.607590987,-1.5372117142
C,0,2.4590019724,-4.607590987,1.5372117142
C,0,2.4032478601,5.4011730364,-0.379382171
C,0,2.4032478601,-5.4011730364,0.379382171
P,0,-1.8235143818,1.8809109776,0.1250639667
P,0,-1.8235143818,-1.8809109776,-0.1250639667
H,0,6.9130962662,0.,0.
C,0,6.0988199279,2.45541882,-0.3991714856
C,0,6.0988199279,-2.45541882,0.3991714856
C,0,3.664024652,2.9468415316,2.2894470997
C,0,3.664024652,-2.9468415316,-2.2894470997
C,0,2.9457839654,2.4046669539,-2.7161629368
C,0,2.9457839654,-2.4046669539,2.7161629368
H,0,2.730697033,5.4754959159,1.7669937209
H,0,2.730697033,-5.4754959159,-1.7669937209
H,0,2.1303687471,5.015702398,-2.4989782789
H,0,2.1303687471,-5.015702398,2.4989782789
H,0,2.0417339817,6.4335210072,-0.4394589112
H,0,2.0417339817,-6.4335210072,0.4394589112
C,0,-3.6730606159,1.8320006766,0.2224189628
C, $0,-3.6730606159,-1.8320006766,-0.2224189628$
C,0,-1.4577562464,2.9252486909,1.6151266549
C, $0,-1.4577562464,-2.9252486909,-1.6151266549$
C,0,-1.5220194464,2.9725971369,-1.3350000441
C,0,-1.5220194464,-2.9725971369,1.3350000441
C,0,-4.2602052129,1.164311021,1.3246109173
С,0,-4.5132524036,2.4805898314,-0.7103118061
C,0,-5.6519335533,1.1708390375,1.5040882697
С,0,-5.9096420497,2.4795694938,-0.5308851685
C,0,-6.4811530679,1.8332814586,0.5782449587
H,0,-3.6186341673,0.6470540071,2.0487622446
H,0,-4.0768886398,2.9990605956,-1.5700980044
H,0,-6.0897498918,0.6537666163,2.3643453528
H,0,-6.5479637883,2.9929504075,-1.258631919
H,0,-7.5673764936,1.8398313151,0.7205956582
C,0,-4.2602052129,-1.164311021,-1.3246109173
C,0,-4.5132524036,-2.4805898314,0.7103118061

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

C,0,-5.6519335533,-1.1708390375,-1.5040882697
C,0,-5.9096420497,-2.4795694938,0.5308851685
C, $0,-6.4811530679,-1.8332814586,-0.5782449587$
H,0,-3.6186341673,-0.6470540071,-2.0487622446
H,0,-4.0768886398,-2.9990605956,1.5700980044
Н, 0,-6.0897498918,-0.6537666163,-2.3643453528
H,0,-6.5479637883,-2.9929504075,1.258631919
H,0,-7.5673764936,-1.8398313151,-0.7205956582
C,0,-2.4098895514,3.8339772551,2.139863512
C,0,-0.2027724429,2.7921585738,2.2536671059
C,0,-2.1129833966,4.5923878945,3.2854250832
C,0,0.0809304857,3.5480467797,3.405823574
C,0,-0.8689282967,4.4455670188,3.9257569075 H,0,-3.3910669138,3.9380521273,1.6643219267 H,0,0.5399984198,2.1089946091,1.8124260078 H,0,-2.8591298763,5.2900459994,3.6816880394 H,0,1.0513843341,3.430444785,3.899298176 H,0,-0.6426455232,5.0276485783,4.8262964507 C,0,-2.4098895514,-3.8339772551,-2.139863512 C, $0,-0.2027724429,-2.7921585738,-2.2536671059$ C,, ,-2.1129833966,-4.5923878945,-3.2854250832 С,0,0.0809304857,-3.5480467797,-3.405823574 C, $0,-0.8689282967,-4.4455670188,-3.9257569075$ H,0,-3.3910669138,-3.9380521273,-1.6643219267 H,0,0.5399984198,-2.1089946091,-1.8124260078 H,0,-2.8591298763,-5.2900459994,-3.6816880394 H,0,1.0513843341,-3.430444785,-3.899298176 H,0,-0.6426455232,-5.0276485783,-4.8262964507 C,0,-1.6572090832,4.3784161546,-1.2817873741 C,0,-1.182985367,2.3579787547,-2.5624968381
C,0,-1.4802621483,5.1517762064,-2.4425272919
C,0,-1.0125265685,3.1335832725,-3.7227161857
C,0,-1.1653907119,4.5312512662,-3.665925615
H,0,-1.890047319,4.8685415355,-0.3300848595
H,0,-1.0299227435,1.2706693669,-2.5897797996
H,0,-1.583375361,6.24116164,-2.3891403245
H,0,-0.7483332514,2.6449858094,-4.6672665361
H,0,-1.0292071623,5.1360383866,-4.5695211137
C,0,-1.6572090832,-4.3784161546,1.2817873741
C,0,-1.182985367,-2.3579787547,2.5624968381
C,0,-1.4802621483,-5.1517762064,2.4425272919 С,0,-1.0125265685,-3.1335832725,3.7227161857 C,0,-1.1653907119,-4.5312512662,3.665925615 H,0,-1.890047319,-4.8685415355,0.3300848595 H,0,-1.0299227435,-1.2706693669,2.5897797996 H,0,-1.583375361,-6.24116164,2.3891403245

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Н,0,-0.7483332514,-2.6449858094,4.6672665361 H,0,-1.0292071623,-5.1360383866,4.5695211137 H,0,5.8524528794,2.9527922501,-1.3559476031 H,0,5.9753261136,3.2139510421,0.3949227809 H,0,7.1560718485,2.1458188211,-0.4272122914 H,0,5.8524528794,-2.9527922501,1.3559476031 H,0,5.9753261136,-3.2139510421,-0.3949227809 H,0,7.1560718485,-2.1458188211,0.4272122914 H,0,3.0920737207,2.0182326708,2.48789847 H,0,4.7339917732,2.6647540295,2.3169786156 H,0,3.4798425985,3.6595448962,3.1106222809 H,0,2.2554626116,1.5473476416,-2.579150455 H,0,2.6286664958,2.9689354119,-3.6087611491 H,0,3.9518508886,1.9829179378,-2.9032225541 H,0,3.0920737207,-2.0182326708,-2.48789847 H,0,4.7339917732,-2.6647540295,-2.3169786156 H,0,3.4798425985,-3.6595448962,-3.1106222809 H,0,2.2554626116,-1.5473476416,2.579150455 H,0,2.6286664958,-2.9689354119,3.6087611491 H,0,3.9518508886,-1.9829179378,2.9032225541

[^0]: ${ }^{1}$ Spencer, D. J. E., Aboelella, N. W.; Reynolds, A. M.; Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 2108.
 ${ }^{2}$ Spencer, D. J. E.; Reynolds, A. M.; Holland, P. L.; Jazdzewski, B. A.; Duboc-Toia, C.; Le Pape, L.; Yokota, S.; Tachi, Y.; Itoh, S.; Tolman, W. B. Inorg. Chem. 2002, 41, 6307.
 ${ }^{3}$ Nyman, C. J.; Wymore, C. E.; Wilkinson, G. J. Chem. Soc. (A) 1968, 561.
 ${ }^{4}$ Scebler, P. J.; Mandimutsira, B. S.; Riordan, C. G.; Liable-Sands, L. M.; Incarvito, C. D.; Rheingold, A. L. J. Am. Chem. Soc., 2001, 123, 331.
 ${ }^{5}$ Holland, P. L.; Tolman, W. B. J. Am. Chem. Soc. 1999, 121, 7270.

[^1]: ${ }^{6}$ Deal, D.; Zink, J.I. Inorg. Chem. 1981, 20, 3995.

