Supporting Information

Construction of a Microporous Inorganic-Organic Hybrid Compound with Uranyl Units

Zhen-Tao Yu, Zuo-Lei Liao, Yu-Sheng Jiang, Guang-Hua Li, Guo-Dong Li and Jie-Sheng Chen*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

To whom correspondence should be addressed: Professor Jie-Sheng Chen, College of Chemistry, Jilin University, Changchun 130012, P. R. China. E-mail: chemcj@mail.jlu.edu.cn.

Materials and methods: All reagents were of reagent grade and commercially available and used as received without further purification. Elemental microanalyses (C, H, N) were carried out on a Perkin-Elmer 2400 elemental analyzer. The metal contents were determined by inductively coupled plasma (ICP) analysis on a Perkin-Elmer optima 3300DV ICP spectrometer.

The powder X-ray diffraction (XRD) patterns (scan rate 2° min⁻¹, Cu-K α radiation λ = 1.5418 Å) were recorded on a Siemens D5005 diffractometer with a graphite monochromator at room temperature. The FT-IR spectra of the samples were obtained using KBr pellets within 4000-500 cm⁻¹ on a Nicolet Impact 410 FTIR spectrometer. The differential thermal (DT) and the thermogravimetric analyses (TGA) were conducted on a Netzsch STA 449C thermal analyzer, under a flow of dry air at a heating rate of 10 K min⁻¹.

Synthesis and general characterization: Single crystals of **1** suitable for X-ray diffraction were synthesized from an aqueous solution that contained uranium component and organic ligands under a hydrothermal condition. The pure single-phase product of **1** was obtained, as confirmed by ICP and C, H and N elemental analysis, and by comparison of the observed powder XRD pattern with that generated from the single-crystal X-ray data.

The IR spectrum of **1** shows peaks at about 3000-3600 and 1600-1700 cm⁻¹, corresponding to water stretching and bending modes in the compound. Main IR features (KBr): v = 3475w, 3370s, 3113w, 2925w, 2357w, 1625m, 1584s, 1526s, 1472m, 1414s, 1387m, 1274w, 1220w, 1162w, 1117m, 1063w, 1014w, 965w, 905s, 856w, 821m, 775w, 717m, 664m, 565m cm⁻¹.

Single-crystal X-ray data for 1 were collected at 293(2) K on a Bruker Smart-CCD diffractometer (Mo-K α , $\lambda = 0.71073$ Å). The structure was solved by direct methods (SHELXTL Version 5.10), and refined with the full-matrix least-squares on F^2 . All non-hydrogen atoms were refined anisotropically and the aromatic hydrogen atoms were calculated ($d_{C-H} = 0.93$ Å) and fixed with thermal parameters based on the carbon atoms to which they are bonded. The six H atoms attached to the oxygen atoms (Ow) of molecules in the empirical formula (([Ni(H₂O)QA three water (bipy) $U_{2,5}O_7(H_2O)OAc$]·H₂O) were not located. Of the 7063 reflections measured (2.43) $\leq \theta \leq 25.01^{\circ}$), 4979 symmetry-independent reflections were used to solve the structure. Based on all these data and 397 refined parameters, $R1 = 0.0346 [I > 2\sigma(I)]$, wR2 =0.0943, and the goodness-of-fit on F^2 was 1.046. The water molecules disordered over three crystallographically unique sites in the crystal structure of **1** was assigned partial occupancy factors, for a better structural resolution.

Adsorption measurement: the adsorption isotherms of H_2O were obtained at 293 K by measuring the increase in weight at equilibrium as a function of relative pressure. Measurements were performed using a CAHN 2000 electrogravimetric balance. A known weight (typically 20-40 mg) of the as-synthesized sample was placed in a cylindrical Pt bucket, and then subjected to a heating program (300 °C, 3h) at vacuum in order to remove the guest water molecules. A point isotherm was recorded at the equilibrium state (the stage when no further weight change was observed).

Photocatalytic testing: photocatalytic reactions in aqueous phase were conducted in a water-cooled quartz (for Hg lamp UV light) or Pyrex (for xenon lamp light) cylindrical cell configuration. The reaction mixture inside the cell was maintained at 20 \pm 2 °C by a continuous flow of water through an external cooling coil with magnetic stirring, and were illuminated from an internal light source with about 2 cm optical path length. The UV light source was a 125 W high-pressure mercury lamp (HPML, main output 313.2 nm). The solar light experiments were performed using a 400 W xenon lamp (radiation wavelength > 400 nm). After the suspension containing a catalyst (160 mg) and the fresh aqueous solution of MB (80 mL, 0.10 mmolL⁻¹) was ultrasonicated for 5 min and magnetically stirred in the dark for ca. 30 min to establish an adsorption/desorption equilibrium confirmed by monitoring the absorbance (at $\lambda = 600$ nm) characteristic of the target MB (after stirred in the dark 30 min, no change for the absorbance), the lamp was inserted into the suspension. At given irradiation time intervals, 2 mL samples were collected, filtered through a Millipore filter to remove catalyst particles, and analyzed immediately by UV-vis spectroscopy with a Perkin-Elmer Lambda 20 UV-vis spectrometer. The photocatalytic performance of the catalysts was estimated by monitoring the variation of the dye concentrations through UV-vis spectroscopy.

Figure S1. Comparison of the simulated XRD pattern (a) for the as-synthesized **1** on the basis of the single crystal structure with the experimental XRD patterns for the as-synthesized compound (b), for the samples calcined at 300 °C for 3 h (c), for the samples after photocatalysis testing (MB) by UV irradiation (d), for the samples after photocatalysis testing (MB) by visible light irradiation (e) and for the samples after dehydration-rehydraton process (f).

Figure S2. Infrared spectrum of 1.

Figure S3. TG and DTA curves of 1.

Figure S4. UV-vis diffuse reflectance spectrum for 1 using BaSO₄ as the background.

Figure S5. Concentration changes of MB under UV irradiation in the presence of (a) **1** (160 mg), (b) the commercial TiO₂ Degussa P-25 (160 mg) and (c) no photocatalyst. It is seen that the photocatalytic activity of **1** is comparable with that of TiO₂ which is being widely used as a photocatalyst.

Figure S6. ORTEP drawing of the asymmetric unit of **1**. Thermal ellipsoids are shown at 50 % probability.

Figure S7. View of the structure of **1** along the *b* axis. Channels are obvious along this direction.

Figure S8. View of the Ni-organic layer along the *ab* plane in 1.

Figure S9. Schematic diagram of the photoreactor. When irradiated with UV light (mercury lamp), water-cooled quartz cylindrical cell configuration was used; while irradiated with xenon-lamp light, water-cooled Pyrex configuration was used.

empirical formula	C ₁₉ H ₂₀ N ₃ NiO ₁₆ U _{2.5}
formula weight	1200.17
temperature [K]	293(2)
crystal system	Triclinic
space group	<i>P</i> -1
<i>a</i> [Å]	10.5466(2)
<i>b</i> [Å]	10.8779(2)
<i>c</i> [Å]	13.4741(3)
α [°]	89.1470(10)
β [°]	74.0720(10)
γ [[°]]	80.1120(10)
V[Å ³]	1463.54(5)
Ζ	2
$\rho [Mg/m^3]$	2.723
$\mu [\mathrm{mm}^{-1}]$	14.053
<i>F</i> (000)	1082
theta range [[°]]	2.43-25.01
limiting indices	-12≤h≤7, -12≤k≤12, -16≤l≤15
reflections collected / unique	7063/4979
completeness to theta $= 25.01$	96.4 %
data / parameters	4979/397
GooF	1.046
$R1^{a}/wR2^{b}$ [I>2 σ (I)]	0.0346/0.0943
R1/wR2 (all data)	0.0371/0.0958

Table S1. Crystal data and structure refinement for **1**.

^[a] $R_1 = \sum \|F_0\| - \|F_c\| / \sum \|F_0\|, [b] w R_2 = [\sum [w(F_0^2 - F_c^2)^2] / \sum [w(F_0^2)^2]]^{1/2}.$

Atom	Х	у	Z	$U(eq)^a$
U(1)	3298(1)	2518(1)	3947(1)	22(1)
U(2)	5000	5000	5000	26(1)
U(3)	5514(1)	1335(1)	5534(1)	18(1)
Ni(1)	0	0	0	17(1)
Ni(2)	5000	0	0	18(1)
O(1)	1873(5)	186(5)	33(4)	24(1)
O(2)	3227(5)	-212(5)	1052(4)	22(1)
O(3)	2305(6)	1078(5)	3190(5)	36(2)
O(4)	2957(7)	-925(5)	3392(5)	39(2)
O(5)	4554(7)	3097(5)	4870(5)	37(2)
O(6)	4217(6)	773(5)	4527(5)	26(1)
O(7)	3342(8)	4816(6)	3884(6)	48(2)
O(8)	4003(7)	6590(5)	3871(5)	39(2)
O(9)	1886(7)	2720(6)	5081(5)	39(2)
O(10)	4597(7)	2400(6)	2740(5)	35(2)
O(11)	1469(7)	3580(6)	3113(5)	41(2)
O(12)	6427(7)	4632(6)	3889(6)	42(2)
O(13)	4119(6)	1466(6)	6675(5)	33(1)
O(14)	6976(7)	1297(6)	4461(5)	40(2)
O(15)	5630(6)	424(6)	1265(4)	30(1)
O(1W)	8996(14)	2678(14)	3425(14)	58(4)
O(2W)	8320(30)	6130(30)	2740(20)	48(7)
O(2W')	9150(30)	5670(20)	3088(19)	38(6)
N(1)	-179(6)	-318(5)	1542(5)	17(1)
N(2)	5833(7)	-1862(6)	157(5)	25(2)
N(3)	9251(7)	-8045(6)	356(5)	26(2)
C(1)	941(7)	-217(6)	1795(6)	18(2)
C(2)	1033(8)	-314(6)	2807(6)	19(2)
C(3)	-35(9)	-642(8)	3526(6)	29(2)
C(4)	-1204(9)	-788(8)	3277(6)	27(2)
C(5)	-1223(7)	-586(7)	2275(6)	21(2)
C(6)	2117(7)	-48(7)	898(6)	20(2)
C(7)	2209(8)	-36(7)	3143(6)	23(2)
C(8)	6619(9)	-2546(8)	-674(6)	30(2)
C(9)	7297(10)	-3727(8)	-626(7)	36(2)
C(10)	7159(9)	-4298(8)	327(7)	31(2)
C(11)	6351(11)	-3591(9)	1198(7)	44(2)
C(12)	5704(10)	-2395(8)	1077(7)	38(2)

Table S2. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å² × 10^3) for **1**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(13)	9761(9)	-7203(8)	-311(7)	33(2)
C(14)	9118(10)	-5992(8)	-331(7)	35(2)
C(15)	7883(9)	-5569(8)	389(7)	31(2)
C(16)	7397(10)	-6409(8)	1109(7)	37(2)
C(17)	8087(9)	-7608(8)	1076(7)	34(2)
C(18)	3368(11)	5896(8)	3540(8)	42(2)
C(19)	2763(17)	6276(13)	2672(12)	76(4)

Table S3. Bond lengths [Å] and angles [°] for 1^a .

U(1)-O(9)	1.803(7)	U(1)-O(10)	1.806(7)
U(1)-O(6)	2.213(5)	U(1)-O(5)	2.217(6)
U(1)-O(3)	2.406(5)	U(1)-O(7)	2.507(6)
U(1)-O(11)	2.588(6)		
U(2)-O(12)	1.800(7)	U(2)-O(12)#1	1.800(7)
U(2)-O(5)	2.220(5)	U(2)-O(5)#1	2.220(5)
U(2)-O(7)	2.633(7)	U(2)-O(7)#1	2.633(7)
U(2)-O(8)	2.566(6)	U(2)-O(8) #1	2.566(6)
U(3)-O(14)	1.796(6)	U(3)-O(13)	1.800(6)
U(3)-O(6)#2	2.261(5)	U(3)-O(5)	2.297(5)
U(3)-O(6)	2.326(5)	U(3)-O(4)#2	2.431(6)
U(3)-O(8)#1	2.584(6)		
	()		
Ni(1)-O(1)	2.033(5)	Ni(1)-O(1)#3	2.033(5)
Ni(1)-N(1)	2.063(6)	Ni(1)-N(1)#3	2.063(6)
Ni(1)-N(3)#4	2.150(7)	Ni(1)-N(3)#5	2.150(7)
Ni(2)-O(2)	2.060(5)	Ni(2)-O(2)#6	2.060(5)
Ni(2)-O(15)	2.075(5)	Ni(2)-O(15)#6	2.075(5)
Ni(2)-N(2)	2.097(6)	Ni(2) - N(2) # 6	2.097(6)
	, (0)		_ , (c)
O(3)-U(1)-O(11)	65 9(2)	O(3)-U(1)-O(7)	136 3(2)
O(5)-U(1)-O(7)	67.44(19)	O(5)-U(1)-O(11)	137.5(2)
O(5)-U(1)-O(3)	156.16(19)	O(6)-U(1)-O(3)	81.82(19)
O(6)-U(1)-O(5)	74 3(2)	O(6)-U(1)-O(7)	141.6(2)
O(6)-U(1)-O(11)	146.7(2)	O(7)-U(1)-O(11)	71.5(2)
O(9)-U(1)-O(10)	174 1(3)	O(9)-U(1)-O(7)	92 2(3)
O(9)-U(1)-O(6)	91 4(3)	O(9)-U(1)-O(5)	89 7(3)
O(9)-U(1)-O(3)	90.6(3)	O(9)-U(1)-O(11)	81.2(3)
O(10)-U(1)-O(6)	93.7(3)	O(10)-U(1)-O(7)	85.5(3)
O(10)-U(1)-O(5)	94.4(3)	O(10)-U(1)-O(11)	92.9(3)
O(10)-U(1)-O(3)	87 3(3)		
O(5)-U(2)-O(7)	65 09(19)	O(5)#1-U(2)-O(7)	114 91(19)
O(5)#1-U(2)-O(7)#1	65.09(19)	O(5) #1-U(2)-O(8)	66 22(19)
O(5)-U(2)-O(7)#1	114 91(19)	O(5)-U(2)-O(8)	113 78(19)
O(5)-U(2)-O(8)#1	66 22(19)	O(5)#1-U(2)-O(8)#1	113 78(19)
O(5) #1-U(2)-O(5)	$180\ 000(1)$	O(8)#1-U(2)-O(8)	180.0(2)
O(8)#1-U(2)-O(7)#1	49 06(19)	O(8)-U(2)-O(7)#1	130.94(19)
O(12)-U(2)-O(12)#1	180 000(1)	O(12)- $U(2)$ - $O(8)$ #1	93 7(3)
$O(12) - U(2) - O(5) \pm 1$	90 7(3)	O(12) #1-U(2) O(0)#1	86 3(3)
O(12) #1-U(2)-O(5)#1	89 3(3)	O(12)-U(2)-O(8)	863(3)
O(12)-U(2)-O(5)	89 3(3)	O(12) #1-U(2)-O(8)	93 7(3)
$O(12) \# 1 \cdot U(2) \cdot O(5)$	90 7(3)	$O(12)_{-}U(2)_{-}O(7)\#1$	88 6(3)

O(12)-U(2)-O(7)	91.4(3)	O(12)#1-U(2)-O(7)#1	91.4(3)
O(12)#1-U(2)-O(7)	88.6(3)	O(8)#1-U(2)-O(7)	130.94(19)
O(7)#1-U(2)-O(7)	180.000(1)	O(8)-U(2)-O(7)	49.06(19)
O(4)#2-U(3)-O(8)#1	69.86(19)	O(5)-U(3)-O(8)#1	64.91(19)
O(5)-U(3)-O(4)#2	134.6(2)	O(5)-U(3)-O(6)	70.7(2)
O(6)#2-U(3)-O(8)#1	152.23(19)	O(6)#2-U(3)-O(4)#2	82.37(19)
O(6)-U(3)-O(8)#1	135.55(18)	O(6)-U(3)-O(4)#2	154.59(19)
O(6)#2-U(3)-O(6)	72.2(2)	O(6)#2-U(3)-O(5)	142.7(2)
O(13)-U(3)-O(8)#1	87.6(3)	O(13)-U(3)-O(4)#2	89.6(3)
O(13)-U(3)-O(6)#2	92.6(3)	O(13)-U(3)-O(5)	92.0(3)
O(13)-U(3)-O(6)	91.2(3)	O(14)-U(3)-O(6)#2	90.8(3)
O(14)-U(3)-O(5)	87.9(3)	O(14)-U(3)-O(8)#1	87.3(3)
O(14)-U(3)-O(6)	94.0(3)	O(14)-U(3)-O(4)#2	86.5(3)
O(14)-U(3)-O(13)	174.5(3)		
O(1)-Ni(1)-O(1)#3	180.0	O(1)#3-Ni(1)-N(3)#5	92.1(2)
O(1)-Ni(1)-N(1)	81.0(2)	N(1)-Ni(1)-N(3)#5	89.7(2)
O(1)#3-Ni(1)-N(1)	99.0(2)	N(1)#3-Ni(1)-N(3)#5	90.3(2)
O(1)-Ni(1)-N(1)#3	99.0(2)	N(3)#4-Ni(1)-N(3)#5	180.0(4)
O(1)#3-Ni(1)-N(1)#3	81.0(2)	O(1)-Ni(1)-N(3)#5	87.9(2)
N(1)-Ni(1)-N(1)#3	180.0(3)	N(1)-Ni(1)-N(3)#4	90.3(2)
O(1)-Ni(1)-N(3)#4	92.1(2)	N(1)#3-Ni(1)-N(3)#4	89.7(2)
O(1)#3-Ni(1)-N(3)#4	87.9(2)		
O(2)#6-Ni(2)-O(2)	180.0(3)	O(15)-Ni(2)-N(2)	86.7(2)
O(2)#6-Ni(2)-O(15)	93.8(2)	O(15)#6-Ni(2)-N(2)	93.3(2)
O(2)-Ni(2)-O(15)	86.2(2)	O(2)#6-Ni(2)-N(2)#6	90.9(2)
O(2)#6-Ni(2)-O(15)#6	86.2(2)	O(2)-Ni(2)-N(2)#6	89.1(2)
O(2)-Ni(2)-O(15)#6	93.8(2)	O(15)-Ni(2)-N(2)#6	93.3(2)
O(15)-Ni(2)-O(15)#6	180.0(3)	O(15)#6-Ni(2)-N(2)#6	86.7(2)
O(2)#6-Ni(2)-N(2)	89.1(2)	N(2)-Ni(2)-N(2)#6	180.0
O(2)-Ni(2)-N(2)	90.9(2)		

^a Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1	#2 -x+1,-y,-z+1	#3 -x,-y,-z	#4 x-1,y+1,z
#5 -x+1,-y-1,-z	#6 -x+1,-y,-z	#7 x+1,y-1,z	-

Table S4. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for **1**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{\AA}^2 \text{U}11 + ... + 2\text{hkabU12}]$.

	U11	U22	U33	U23	U13	U12
U(1)	33(1)	18(1)	22(1)	2(1)	-18(1)	-6(1)
U(2)	40(1)	15(1)	30(1)	1(1)	-23(1)	-6(1)
U(3)	21(1)	17(1)	20(1)	1(1)	-11(1)	-5(1)
Ni(1)	13(1)	23(1)	15(1)	2(1)	-7(1)	-3(1)
Ni(2)	12(1)	22(1)	20(1)	-1(1)	-5(1)	-2(1)
O(1)	18(3)	40(3)	16(3)	4(2)	-8(2)	-7(2)
O(2)	11(3)	36(3)	22(3)	6(2)	-7(2)	-6(2)
O(3)	45(4)	24(3)	52(4)	1(3)	-36(3)	-7(3)
O(4)	47(4)	28(3)	62(4)	8(3)	-44(4)	-11(3)
O(5)	68(5)	15(3)	46(4)	3(2)	-45(4)	-7(3)
O(6)	33(3)	17(3)	36(3)	1(2)	-24(3)	-6(2)
O(7)	72(5)	27(3)	62(5)	8(3)	-48(4)	-8(3)
O(8)	68(5)	20(3)	48(4)	8(3)	-44(4)	-11(3)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
O(2W) 37(9) 31(9) 32(9) -13(7) 13(7) -1(8) N(1) 10(2) 22(2) 21(2) 2(2) 5(2) 4(2)	
N(1) = 10(2) = 22(2) = 21(2) = 2(2) = 5(2) = 4(2)	
1N(1) = 10(3) = 22(3) = 21(3) = 2(2) = -3(3) = -4(2)	
N(2) $24(4)$ $27(4)$ $22(4)$ $-1(3)$ $-6(3)$ $0(3)$	
N(3) 26(4) 28(4) 25(4) 3(3) -8(3) -2(3)	
C(1) 16(4) 19(3) 21(4) -3(3) -8(3) -2(3)	
C(2) 26(4) 14(3) 20(4) 1(3) -12(3) -4(3)	
C(3) 31(5) 36(5) 21(4) 2(3) -10(4) -3(4)	
C(4) 28(5) 35(4) 19(4) 5(3) -5(3) -10(4)	
C(5) 15(4) 29(4) 20(4) 1(3) -3(3) -5(3)	
C(6) 16(4) 21(4) 24(4) 1(3) -8(3) -6(3)	
C(7) 26(4) 27(4) 21(4) -2(3) -13(3) -9(3)	
C(8) 41(5) 31(4) 17(4) 1(3) -11(4) -2(4)	
C(9) 46(6) 31(5) 25(4) -3(4) -8(4) 5(4)	
C(10) 31(5) 26(4) 32(5) 7(3) -5(4) -1(4)	
C(11) 62(7) 32(5) 25(5) 5(4) -1(5) 4(4)	
C(12) 50(6) 33(5) 21(4) -2(4) -2(4) 4(4)	
C(13) 28(5) 30(4) 36(5) -1(4) -2(4) -3(4)	
C(14) 40(5) 23(4) 37(5) 0(4) -2(4) -5(4)	
C(15) 35(5) 27(4) 29(4) 4(3) -8(4) -3(4)	
C(16) 38(5) 31(5) 29(5) 3(4) 6(4) 5(4)	
C(17) 37(5) 26(4) 33(5) 2(4) -6(4) 1(4)	
C(18) 67(7) 18(4) 57(6) -1(4) -43(6) -9(4)	
C(19) 103(8) 70(7) 87(8) 21(6) -68(7) -32(6)	

Table S5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10³) for **1**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	у	Z	U(eq)
H(3)	16	-772	4198	80
H(4)	-1931	-1011	3767	80
H(5)	-2005	-639	2097	80
H(8)	6709	-2198	-1320	80
H(9)	7848	-4150	-1226	80
H(11)	6246	-3916	1852	80
H(12)	5154	-1942	1663	80
H(13)	10593	-7453	-783	80
H(14)	9502	-5456	-823	80
H(16)	6598	-6164	1619	80
H(17)	7735	-8149	1576	80
H(19A)	2320	5629	2524	80
H(19B)	3456	6407	2069	80
H(19C)	2126	7035	2869	80