Experimental Section

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The elemental analyses of C, H and N were performed on a Perkin-Elmer 240C elemental analyzer at the Analysis Center of Nanjing University. Electrospray mass spectra were carried out on a LCQ system (Finnigan MAT, USA) using methanol as mobile phase. $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectroscopic measurements were performed on a Bruker AM-500 NMR spectrometer, using TMs (SiMe_{4}) as an internal reference at $25^{\circ} \mathrm{C}$. The intensities of complexes $\mathbf{3}$ and $\mathbf{4}$ were collected on a Siemens SMART-CCD diffractometer with graphite-monochromatic Mo-K α radiation ($\lambda=$ $0.71073 \AA$) using SMART and SAINT program. The structure was solved by direct methods and refined on F^{2} with the full-matrix least-squares methods using SHELXTL version 5.1. The perchlorate and the tetrafluorideboranate anions were refined disordered. Anisotropic thermal parameters were refined for non-hydrogen atoms. Hydrogen atoms of the host were located geometrically and refined in a riding model.

Preparation of complound 2: In a stirring 5 mL dry xylene solution containing 0.18 g 1,4,7,10,13,16,21,24-octaazabicyclo[8,8,8] hexacosane at $120^{\circ} \mathrm{C}, 0.24 \mathrm{~g}$ triethyl orthoformate in 3 mL dry xylene were added dropwise. After refluxing for 3 hrs , $0.15 \mathrm{~g} \mathrm{NH}_{4} \mathrm{BF}_{4}$ was added. The reaction was carried out at $120^{\circ} \mathrm{C}$ for another 3 hrs , and then heated to $137^{\circ} \mathrm{C}$, kept for 1 hr . White powder of crude product was obtained by cooling the solution to room temperature. Colorless crystalline solid 2 was obtained by recrystallization the original powder with water and dried under vacuum, yield 0.40 g, Anal. calcd. $\left(\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{8}\right)\left(\mathrm{NH}_{4}\right)\left(\mathrm{BF}_{4}\right)_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 32.02, \mathrm{H}, 5.72, \mathrm{~N}, 16.15$; Found: C, 32.20, H, 5.46, N, 15.64. For compound 2 with the perchlorate anion: A solution of compound 2 in water was eluted through an anionic exchange column in the base form. The elutant was neutralized with a concentrated aqueous solution of HClO_{4}. The result solution was condensed by evaporator and placed over $\mathrm{P}_{2} \mathrm{O}_{5}$. Colorless crystal was obtained in high yield (near 100\%) after several days. Anal. calcd. $\left(\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{8}\right)\left(\mathrm{ClO}_{4}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 35.02, \mathrm{H}, 5.70$, N, 15.57; Found: C, 34.98, H, 5.74, N, 15.40.

For the interior compound $\mathrm{F}^{-} \subset 2 \cdot \mathrm{H}_{2}$: crystals of $\mathrm{F}^{-} \subset 2 \cdot \mathrm{H}_{2}$ suitable for X-ray structure analysis were formed by evaporating compound 2 in $0.1 \mathrm{M} \mathrm{HClO}_{4}$ and $0.1 \mathrm{M} \mathrm{NaBF}_{4}$ solution. Anal. calcd. $\left(\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{8} \mathrm{~F}\right)\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}: \mathrm{C}, 31.42, \mathrm{H}, 5.00, \mathrm{~N}, 14.00$; Found: C, 31.32, H, 5.18, N, 13.64.

For a high affinity host, the concentration of the fluoride anion [F-] is quite small; since the $\left[\mathrm{Zr}^{4+}\right]$ is constant $(0.5 \mathrm{M})$ which is larger than [$\mathrm{F}-$], only the comproporation of the ZrF is considered. In this case, the competition reactions quoted are as bellow:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{F}=\mathrm{AF} \\
& \mathrm{~F}+\mathrm{Zr}=\mathrm{ZrF} \\
& {[\mathrm{AF}] /([\mathrm{A}] \quad[\mathrm{F}])=\mathrm{K}_{\mathrm{s}}} \\
& {[\mathrm{ZrF}] /([\mathrm{F}] \quad[\mathrm{Zr}])=\beta} \\
& {[\mathrm{F}]=[\mathrm{ZrF}] /(\beta *[\mathrm{Zr}])=2[\mathrm{ZrF}] / \beta} \\
& \mathrm{K}_{\mathrm{s}}=[\mathrm{AF}] * \beta([\mathrm{~A}] * 2[\mathrm{ZrF}]) \\
& 2 \mathrm{~K}_{\mathrm{s}} / \beta=[\mathrm{AF}] /([\mathrm{A}][\mathrm{ZrF}])
\end{aligned}
$$

Where [A] is the concentration of the free crypt, [AF] is the concentration of the interior compound, $[\mathrm{ZrF}]$ is the concentration of the competition product.

Assume the beginning concentration of $[A]$ is $\mathrm{c}_{0},[\mathrm{AF}]=\mathrm{xc}_{0}$, then $[\mathrm{A}]=(1-\mathrm{x}) \mathrm{c}_{0}$.
Assume the chemical shift before added the fluoride anion is δ_{0}, and the δ_{L} is the chemical shift of the pure interior compound. And δ is the chemical shift at the time the concentration of the added fluoride anion of ac_{0},
Assume $[\mathrm{AF}]=\mathrm{xc}_{0}$, then $[\mathrm{A}]=(1-\mathrm{x}) \mathrm{c}_{0}$ then:

$$
\begin{aligned}
& \mathrm{x}=\left(\delta_{\mathrm{L}}-\delta\right) /\left(\delta_{\mathrm{L}}-\delta_{0}\right) \\
& 1-\mathrm{x}=\left(\delta-\delta_{0}\right) /\left(\delta_{\mathrm{L}}-\delta_{0}\right) \\
& {[\mathrm{ZrF}]=\mathrm{c}_{0}(\mathrm{a}-\mathrm{x})=\mathrm{c}_{0}\left[\mathrm{a}-\left(\delta_{\mathrm{L}}-\delta\right) /\left(\delta_{\mathrm{L}}-\delta_{0}\right)\right]} \\
& 2 \mathrm{~K}_{\mathrm{s}} \mathrm{c}_{0} / \beta=[\mathrm{AF}] /([\mathrm{A}][\mathrm{ZrF}])=\left(\delta_{\mathrm{L}}-\delta\right) /\left\{\left(\delta-\delta_{0}\right)^{*} \mathrm{c}_{0}\left[\mathrm{a}-\left(\delta_{\mathrm{L}}-\delta\right) /\left(\delta_{\mathrm{L}}-\delta_{0}\right)\right]\right\} \\
& 2 \mathrm{~K}_{\mathrm{s}} \mathrm{c}_{0} / \beta\left[\mathrm{a}-\left(\delta_{\mathrm{L}}-\delta\right) /\left(\delta_{\mathrm{L}}-\delta_{0}\right)\right]=\left(\delta_{\mathrm{L}}-\delta\right) /\left(\delta-\delta_{0}\right) \\
& 2 \mathrm{~K}_{\mathrm{s}} \mathrm{c}_{0} / \beta\left[\mathrm{a} /\left(\delta_{\mathrm{L}}-\delta\right)-1 /\left(\delta_{\mathrm{L}}-\delta_{0}\right)\right]=1 /\left(\delta-\delta_{0}\right) \\
& \mathrm{a} /\left(\delta_{\mathrm{L}}-\delta\right)-1 /\left(\delta_{\mathrm{L}}-\delta_{0}\right)=\left(\beta / 2 \mathrm{~K}_{\mathrm{s}} \mathrm{c}_{0}\right) /\left(\delta-\delta_{0}\right)
\end{aligned}
$$

Draw the plot $\left[\mathrm{a} /\left(\delta_{\mathrm{L}}-\delta\right)\right]$ vs $\left[1 /\left(\delta-\delta_{0}\right)\right]$, the K_{s} value could be obtained $(\log \beta=8.8$ for our calculation).

Table 1. Interaction energy and electron density topological properties for the complex 3.

	Interactions	$10^{2} \rho(\mathrm{r})$	$10^{2} \nabla^{2} \rho(\mathrm{r})$
$\mathrm{CP}(3,-1)$	$\mathrm{H}(1 \mathrm{~A})-\mathrm{F}(1)$	4.468	15.518
	$\mathrm{H}(4 \mathrm{~A})-\mathrm{F}(1)$	4.404	15.285
	$\mathrm{~F}(1)-\mathrm{C}(3)$	1.800	6.198
	$\mathrm{~F}(1)-\mathrm{C}(10)$	1.821	6.260
	$\mathrm{~F}(1)-\mathrm{C}(17)$	1.934	6.770
	$\mathrm{~F}(1)-\mathrm{C}(17)-\mathrm{N}(7)-\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.549	2.589
	$\mathrm{~F}(1)-\mathrm{C}(17)-\mathrm{N}(8)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A})$	0.566	2.700
	$\mathrm{~F}(1)-\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.597	2.738
$\mathrm{CP}(3,1)$	$\mathrm{F}(1)-\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A})$	0.594	2.834
	$\mathrm{~F}(1)-\mathrm{C}(10)-\mathrm{N}(5)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~A})$	0.578	2.721
	$\mathrm{~F}(1)-\mathrm{C}(10)-\mathrm{N}(6)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}(4)-\mathrm{H}(4 \mathrm{~A})$	0.627	2.867
$\Delta \mathrm{E}(\mathrm{Kcal} / \mathrm{Mol})$	-505.83		

