Experimental Section

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. The elemental analyses of C, H and N were performed on a Perkin-Elmer 240C elemental analyzer at the Analysis Center of Nanjing University. Electrospray mass spectra were carried out on a LCQ system (Finnigan MAT, USA) using methanol as mobile phase. 500 MHz ¹H NMR spectroscopic measurements were performed on a Bruker AM-500 NMR spectrometer, using TMs (SiMe₄) as an internal reference at 25 °C. The intensities of complexes **3** and **4** were collected on a Siemens SMART–CCD diffractometer with graphite-monochromatic Mo-K α radiation ($\lambda =$ 0.71073 Å) using SMART and SAINT program. The structure was solved by direct methods and refined on F^2 with the full-matrix least-squares methods using SHELXTL version 5.1. The perchlorate and the tetrafluorideboranate anions were refined disordered. Anisotropic thermal parameters were refined for non-hydrogen atoms. Hydrogen atoms of the host were located geometrically and refined in a riding model.

Preparation of complound **2**: In a stirring 5 mL dry xylene solution containing 0.18 g 1,4,7,10,13,16,21,24-octaazabicyclo[8,8,8] hexacosane at 120°C, 0.24 g triethyl orthoformate in 3 mL dry xylene were added dropwise. After refluxing for 3 hrs, 0.15 g NH₄BF₄ was added. The reaction was carried out at 120°C for another 3 hrs, and then heated to 137°C, kept for 1 hr. White powder of crude product was obtained by cooling the solution to room temperature. Colorless crystalline solid **2** was obtained by recrystallization the original powder with water and dried under vacuum, yield 0.40 g, Anal. calcd. (C₂₁H₃₉N₈)(NH₄)(BF₄)₄·H₂O: C, 32.02, H, 5.72, N, 16.15; Found: C, 32.20, H, 5.46, N, 15.64. For compound **2** with the perchlorate anion: A solution of compound **2** in water was eluted through an anionic exchange column in the base form. The elutant was neutralized with a concentrated aqueous solution of HClO₄. The result solution was condensed by evaporator and placed over P₂O₅. Colorless crystal was obtained in high yield (near 100%) after several days. Anal. calcd. (C₂₁H₃₉N₈)(ClO₄)₃·H₂O: C, 35.02, H, 5.70, N, 15.57; Found: C, 34.98, H, 5.74, N, 15.40.

For the interior compound $F \subset 2 \cdot H_2$: crystals of $F \subset 2 \cdot H_2$ suitable for X-ray structure analysis were formed by evaporating compound **2** in 0.1 M HClO₄ and 0.1M NaBF₄ solution. Anal. calcd. $(C_{21}H_{39}N_8F)(BF_4)_2(ClO_4)_2 (H_2O)_{0.5}$: C, 31.42, H, 5.00, N, 14.00; Found: C, 31.32, H, 5.18, N, 13.64. For a high affinity host, the concentration of the fluoride anion [F-] is quite small; since the $[Zr^{4+}]$ is constant (0.5M) which is larger than [F-], only the comproporation of the ZrF is considered. In this case, the competition reactions quoted are as bellow:

$$\begin{array}{rcl} A &+ F &= AF \\ F &+ Zr &= ZrF \\ [AF] / ([A] & [F]) &= K_s \\ [ZrF] / ([F] & [Zr]) &= \beta \\ [F] &= [ZrF] / (\beta * [Zr]) &= 2 [ZrF] / \beta \\ K_s &= [AF] * \beta ([A] * 2 [ZrF]) \\ 2K_s / \beta &= [AF] / ([A] [ZrF]) \end{array}$$

Where [A] is the concentration of the free crypt, [AF] is the concentration of the interior compound, [ZrF] is the concentration of the competition product.

Assume the beginning concentration of [A] is c_0 , [AF] = xc_0 , then [A] = $(1-x)c_0$.

Assume the chemical shift before added the fluoride anion is δ_0 , and the δ_L is the chemical shift of the pure interior compound. And δ is the chemical shift at the time the concentration of the added fluoride anion of ac_0 ,

Assume $[AF] = xc_0$, then $[A] = (1-x)c_0$ then: $x = (\delta_L - \delta) / (\delta_L - \delta_0)$ $1 - x = (\delta - \delta_0) / (\delta_L - \delta_0)$ $[ZrF] = c_0 (a - x) = c_0 [a - (\delta_L - \delta) / (\delta_L - \delta_0)]$ $2K_s c_0 / \beta = [AF] / ([A] [ZrF]) = (\delta_L - \delta) / ((\delta - \delta_0)^* c_0 [a - (\delta_L - \delta) / (\delta_L - \delta_0)])$ $2K_s c_0 / \beta [a - (\delta_L - \delta) / (\delta_L - \delta_0)] = (\delta_L - \delta) / ((\delta - \delta_0))$ $2K_s c_0 / \beta [a / (\delta_L - \delta) - 1 / (\delta_L - \delta_0)] = 1 / (\delta - \delta_0)$ $a / (\delta_L - \delta) - 1 / (\delta_L - \delta_0) = (\beta / 2K_s c_0) / (\delta - \delta_0)$

Draw the plot [a /($\delta_L - \delta$)] vs [1/ ($\delta - \delta_0$)], the K_s value could be obtained (log β = 8.8 for our calculation).

	Interactions	$10^{2}\rho(r)$	$10^2 \nabla^2 \rho(\mathbf{r})$
CP(3,-1)	H(1A)-F(1)	4.468	15.518
	H(4A)-F(1)	4.404	15.285
	F(1)-C(3)	1.800	6.198
	F(1)-C(10)	1.821	6.260
	F(1)-C(17)	1.934	6.770
CP(3,1)	F(1)-C(17)-N(7)-C(16)-C(15)-N(1)-H(1A)	0.549	2.589
	F(1)-C(17)-N(8)-C(20)-C(21)-N(4)-H(4A)	0.566	2.700
	F(1)-C(3)-N(2)-C(2)-C(1)-N(1)-H(1A)	0.597	2.738
	F(1)-C(3)-N(3)-C(6)-C(7)-N(4)-H(4A)	0.594	2.834
	F(1)-C(10)-N(5)-C(9)-C(8)-N(1)-H(1A)	0.578	2.721
	F(1)-C(10)-N(6)-C(13)-C(14)-N(4)-H(4A)	0.627	2.867
ΔE (Kcal/Mol)		-505.83	

Table 1. Interaction energy and electron density topological properties for the complex **3**.