\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
SUPPLEMENTARY MATERIAL

The decoration of each of the double layered 6-connected networks is unimportant in the determination of topology but can be seen as completing the co-ordination sphere in $\mathbf{2}$, expanding the structure to accommodate anions in $\mathbf{3}$ or accommodating extra ligands in $\mathbf{4}$. In $\mathbf{2}$ the triflate anions occupy the free space between the 4^{4} nets of a single bilayer. In $\mathbf{3}$ the iodide ions occupy space both within a bilayer and between adjacent bilayers. The large volume within the framework of $\mathbf{4}$ accommodates not only ClO_{4}^{-} anions but also one molecule of chlorobenzene and one $\mathrm{CH}_{3} \mathrm{OH}$ molecule per metal centre.

Crystallographic Data

Crystal data for 1: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{LaN}_{7} \mathrm{O}_{13}, M=701.31$, monoclinic, space group $C 2 / c, a=27.008(8) \AA$, $b=13.389(4) \AA, c=13.982(3) \AA, \beta=106.29(2)^{\circ}, U=4853(2) \AA^{3}, Z=8, D_{c}=1.920 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=1.846$ $\mathrm{mm}^{-1}, T=298(2) \mathrm{K} .4771$ unique reflections $\left(R_{\mathrm{int}}=0.026\right)$. Final $R_{1}[4122 I>2 \sigma(I)]=0.0292, w R 2$ (all data) $=0.0634$.

Crystal data for 2: $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{17} \mathrm{~S}_{3} \mathrm{Yb}, M=1216.8$, orthorhombic, space group Pcca (No. 54), $a=16.794(3) \AA, b=13.764(3) \AA, c=20.044(4) \AA, U=4633.4(14) \AA^{3}, Z=4, D_{c}=1.744 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=2.264 \mathrm{~mm}^{-1}, T=150(2) \mathrm{K} .5345$ unique reflections $\left(R_{\mathrm{int}}=0.074\right)$. Final $R_{1}[3592 I>2 \sigma(I)]=$ $0.0965, w R 2($ all data $)=0.249$.

Crystal data for 3: $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{ErI}_{9} \mathrm{~N}_{11} \mathrm{O}_{13}, M=2388.4$, orthorhombic, space group Pbcn, $a=43.203(8) \AA$, $b=19.244(4) \AA, c=17.167(3) \AA, U=14274(8) \AA^{3}, Z=8, D_{\mathrm{c}}=2.223 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=5.13 \mathrm{~mm}^{-1}, T=$ $150(2)$ K. 15426 unique reflections $\left(R_{\text {int }}=0.046\right)$. Final $R_{1}[14261 I>2 \sigma(I)]=0.079, w R 2($ all data $)=$ 0.169 .

Crystal data for 4: $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{LaN}_{8} \mathrm{O}_{21}, M=1334.59$, monoclinic, space group $P 2_{1} / n, a=16.6846(8) \AA, b$ $=19.8749(9) \AA, c=32.669(2) \AA, \beta=100.664(2)^{\circ}, U=10646(2) \AA^{3}, Z=8, D_{\mathrm{c}}=1.665 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=1.091 \mathrm{~mm}^{-1}, T=150(2) \mathrm{K} .20663$ unique reflections $\left(R_{\mathrm{int}}=0.118\right)$. Final $R_{1}[13088 I>2 \sigma(I)]=$ $0.059, w R 2($ all data $)=0.195$.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
Crystal data for 5: $\mathrm{C}_{86.7} \mathrm{H}_{91.8} \mathrm{~B}_{2} \mathrm{LaN}_{5} \mathrm{O}_{11.7} M=1551.58$, monoclinic, space group $C 2 / c, a=49.269(7) \AA, b$ $=17.698(3) \AA, c=18.718(3) \AA, \beta=105.946(3)^{\circ} U=15693(3) \AA^{3}, Z=8 D_{\mathrm{c}}=1.313 \mathrm{Mg} / \mathrm{m}^{3}, \mu(\mathrm{Mo}-\mathrm{K} \alpha)$
$=0.609 \mathrm{~mm}^{-1}, T=150(2) \mathrm{K}, 15221$ unique reflections $\left(R_{\text {int }}=0.045\right)$. Final $R_{1}[9822 I>2 \sigma(I)]=0.068$, $w R 2($ all data $)=0.208$.

Synthesis of 1-5

Preparation of $\left\{\mathrm{La}(\mathrm{L})_{2}\left(\mathrm{NO}_{3}\right)_{3}\right\}_{\infty} \mathbf{1}$:
A solution of $\mathrm{L}(22 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$ was carefully mixed with a solution of $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(22 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}\left(6 \mathrm{~cm}^{3}\right)$. The reaction yielded a pale yellow crystalline product after several hours. Elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{LaN}_{7} \mathrm{O}_{13}$: C 34.25, H 2.30, N 13.98; found 34.09, H 2.17, N 13.74 .

Preparation of $\left\{\left[\mathrm{Yb}(\mathrm{L})_{3}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}\right\}_{\infty} \mathbf{2}$:
$\mathrm{Yb}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} . x \mathrm{H}_{2} \mathrm{O}(31.8 \mathrm{mg}, 0.05 \mathrm{mmol})$ was covered with $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3}\right)$ on top of which a solution of L ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was layered. Colourless square plate shaped crystals appeared over a period of 1 week. Elemental analysis calcd (\%) for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~F}_{9} \mathrm{~N}_{6} \mathrm{O}_{17} \mathrm{~S}_{3} \mathrm{Yb}$: C 36.07, H 2.20, N 21.67; found C 35.16, H 2.52, N 20.41 .

Preparation of $\left\{\left[\mathrm{Er}(\mathrm{L})_{5}\right]\left(\mathrm{I}_{3}\right)_{3}(\mathrm{~L})_{0.5}(\mathrm{MeOH})\right\}_{\infty}, \mathbf{3}$:
$\mathrm{ErCl}_{3}(6 \mathrm{mg}, 0.013 \mathrm{mmol}), \mathrm{I}_{2}(16.5 \mathrm{mg}, 0.065 \mathrm{mmol})$ and $\mathrm{NaI}(1.8 \mathrm{mg}, 0.012 \mathrm{mmol})$ was dissolved in MeOH $\left(10 \mathrm{~cm}^{3}\right)$, to which a solution of $\mathrm{L}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was added. Dark red lath shaped crystals appeared over a period of 48 h. Elemental analysis calcd (\%) for $\mathrm{C}_{56} \mathrm{H}_{43} \mathrm{ErI}_{9} \mathrm{~N}_{11} \mathrm{O}_{13}$: C 28.16, H 1.86, N 6.45; found C 27.76; H 1.96; N 6.06.

Preparation of $\left[\mathrm{La}(\mathrm{L})_{4}\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}^{-\mathrm{CH}_{3} \mathrm{OH}, 4:}$
$\mathrm{La}\left(\mathrm{ClO}_{4}\right)_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(45 \mathrm{mg}, 0.1 \mathrm{mmol})$ was covered with chlorobenzene $\left(10 \mathrm{~cm}^{3}\right)$, on which a solution of L ($59 \mathrm{mg}, 0.3 \mathrm{mmol}$) in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was layered. Colourless crystals appeared at on the wall of the
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
vessel over a period of a week. Elemental analysis calcd (\%) for $\mathrm{C}_{47} \mathrm{H}_{41} \mathrm{Cl}_{4} \mathrm{LaN}_{8} \mathrm{O}_{21}$: C 42.30, H 3.10, N 8.40; found C 42.23, H 3.15, N 8.75 .

Preparation of $\left[\mathrm{La}(\mathrm{L})_{2.5}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)\right]\left(\mathrm{BPh}_{4}\right)_{2} \cdot 2.7 \mathrm{CH}_{3} \mathrm{OH} 5$:
Lanthanum chloride hydrate ($18 \mathrm{mg}, 0.05 \mathrm{mmol}$) in methanol ($5 \mathrm{~cm}^{3}$) was added to a solution of 2norbornyl acetic acid ($8 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{NaOMe}(3 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$. To this solution was then added firstly a solution of sodium tetraphenylborate ($51 \mathrm{mg}, 0.15 \mathrm{mmol}$) in MeOH (5 cm^{3}) and secondly a solution of $\mathrm{L}(33 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{MeOH}\left(5 \mathrm{~cm}^{3}\right)$. The resultant white emulsionlike precipitate slowly transformed to a light yellow crystalline product in $c a .3$ days. Yield: 47 mg (59\%); anal. calcd for $\mathrm{C}_{86.7} \mathrm{H}_{91.8} \mathrm{~B}_{2} \mathrm{LaN}_{5} \mathrm{O}_{11.7}$: C 67.11, H 5.96, N 4.51 ; Found: C 65.80 , H 5.60, N 4.52 . Elemental and powder diffraction analysis indicates possible impurities of other yet unidentified products.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
Supplementary Figures

Supplementary Figure 1: Full structure of 2 showing the positions of the triflate anions (red) within the bi-layer structure (green).

Supplementary Figure 2: Full structure of $\mathbf{3}$ showing the positions of the iodide anions (red), the bi-layer structure (green) and the non-co-ordinating ligands (blue).
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004

Supplementary Figure 3: View of the full structure of $\mathbf{4}$ positions of the perchlorate anions (red) within the bilayer structure (green).

Supplementary Figure 4: Full structure of $\mathbf{5}$ showing the position of the tetraphenylborate anions (red) and the bi-layer structure (green).
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004

