Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2004SUPPLEMENTARY MATERIAL

The decoration of each of the double layered 6-connected networks is unimportant in the determination of topology but can be seen as completing the co-ordination sphere in **2**, expanding the structure to accommodate anions in **3** or accommodating extra ligands in **4**. In **2** the triflate anions occupy the free space between the 4^4 nets of a single bilayer. In **3** the iodide ions occupy space both within a bilayer and between adjacent bilayers. The large volume within the framework of **4** accommodates not only ClO_4^- anions but also one molecule of chlorobenzene and one CH_3OH molecule per metal centre.

Crystallographic Data

Crystal data for 1: $C_{20}H_{16}LaN_7O_{13}$, M = 701.31, monoclinic, space group C2/c, a=27.008(8) Å, b=13.389(4) Å, c=13.982(3) Å, $\beta =106.29(2)^\circ$, U=4853(2) Å³, Z=8, $D_c=1.920$ Mg/m³, μ (Mo-K α)=1.846 mm⁻¹, T = 298(2) K. 4771 unique reflections ($R_{int} = 0.026$). Final R_1 [4122 $I > 2\sigma(I)$] = 0.0292, wR2 (all data) = 0.0634.

Crystal data for **2**: C₃₃H₂₄F₉N₆O₁₇S₃Yb, *M*=1216.8, orthorhombic, space group *Pcca* (No. 54), *a*=16.794(3) Å, *b*=13.764(3) Å, *c*=20.044(4) Å, *U*=4633.4(14) Å³, *Z*=4, *D_c*=1.744 Mg/m³, μ (Mo-K α)=2.264 mm⁻¹, *T* = 150(2) K. 5345 unique reflections (*R*_{int} = 0.074). Final *R*₁ [3592 *I* > 2 σ (*I*)] = 0.0965, *wR*2 (all data) = 0.249.

Crystal data for **3**: C₅₆H₄₄ErI₉N₁₁O₁₃, *M*=2388.4, orthorhombic, space group *Pbcn*, *a*=43.203(8) Å, *b*=19.244(4) Å, *c*=17.167(3) Å, *U*=14274(8) Å³, *Z*=8, $D_c = 2.223 \text{ Mg/m}^3$, μ (Mo-K α) = 5.13 mm⁻¹, *T* = 150(2) K. 15426 unique reflections ($R_{int} = 0.046$). Final R_1 [14261 $I > 2\sigma(I)$] = 0.079, *wR*2 (all data) = 0.169.

Crystal data for 4: C₄₇H₄₁Cl₄LaN₈O₂₁, M = 1334.59, monoclinic, space group $P2_1/n$, a = 16.6846(8) Å, b = 19.8749(9) Å, c = 32.669(2) Å, $\beta = 100.664(2)^\circ$, U = 10646(2) Å³, Z = 8, $D_c = 1.665$ Mg/m³, μ (Mo-K α) = 1.091 mm⁻¹, T = 150(2) K. 20663 unique reflections ($R_{int} = 0.118$). Final R_1 [13088 $I > 2\sigma(I)$] = 0.059, wR2 (all data) = 0.195.

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is © The Royal Society of Chemistry 2004

Crystal data for **5**: C_{86.7}H_{91.8}B₂LaN₅O_{11.7} M = 1551.58, monoclinic, space group C2/c, a = 49.269(7) Å, b = 17.698(3) Å, c = 18.718(3) Å, $\beta = 105.946(3)^{\circ}$ U = 15693(3) Å³, Z = 8 $D_c = 1.313$ Mg/m³, μ (Mo-K α) = 0.609 mm⁻¹, T = 150(2) K, 15221 unique reflections ($R_{int} = 0.045$). Final R_1 [9822 $I > 2\sigma(I)$] = 0.068, wR2 (all data) = 0.208.

Synthesis of 1 - 5

Preparation of $\{La(L)_2(NO_3)_3\}_{\infty}1$:

A solution of L (22 mg, 0.10 mmol) in MeOH (6cm³) was carefully mixed with a solution of La(NO₃)₃•6H₂O (22 mg, 0.05mmol) in MeOH (6 cm³). The reaction yielded a pale yellow crystalline product after several hours. Elemental analysis calcd (%) for $C_{20}H_{16}LaN_7O_{13}$: C 34.25, H 2.30, N 13.98; found 34.09, H 2.17, N 13.74.

Preparation of $\{[Yb(L)_3](CF_3SO_3)_3\}_{\infty} 2$:

Yb(CF₃SO₃)_{3.}*x*H₂O (31.8mg, 0.05mmol) was covered with CHCl₃ (5 cm³) on top of which a solution of L (10mg, 0.05mmol) in MeOH (10 cm³) was layered. Colourless square plate shaped crystals appeared over a period of 1 week. Elemental analysis calcd (%) for $C_{33}H_{24}F_9N_6O_{17}S_3Yb$: C 36.07, H 2.20, N 21.67; found C 35.16, H 2.52, N 20.41.

Preparation of $\{[Er(L)_5](I_3)_3(L)_{0.5}(MeOH)\}_{\infty}$, **3**:

 $ErCl_3$ (6mg, 0.013mmol), I_2 (16.5mg, 0.065mmol) and NaI (1.8mg, 0.012mmol) was dissolved in MeOH (10 cm³), to which a solution of L (10mg, 0.05mmol) in MeOH (10 cm³) was added. Dark red lath shaped crystals appeared over a period of 48h. Elemental analysis calcd (%) for $C_{56}H_{43}ErI_9N_{11}O_{13}$: C 28.16, H 1.86, N 6.45; found C 27.76; H 1.96; N 6.06.

Preparation of $[La(L)_4](ClO_4)_3 \cdot C_6H_5Cl \cdot CH_3OH, 4$:

 $La(ClO_4)_3$:xH₂O (45 mg, 0.1 mmol) was covered with chlorobenzene (10 cm³), on which a solution of L (59 mg, 0.3 mmol) in MeOH (10 cm³) was layered. Colourless crystals appeared at on the wall of the

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

vessel over a period of a week. Elemental analysis calcd (%) for C47H41Cl4LaN8O21: C 42.30, H 3.10, N

8.40; found C 42.23, H 3.15, N 8.75.

Preparation of [La(L)_{2.5}(CH₃OH)₂(C₇H₁₁CH₂CO₂)](BPh₄)₂·2.7CH₃OH **5**:

Lanthanum chloride hydrate (18 mg, 0.05 mmol) in methanol (5 cm³) was added to a solution of 2norbornyl acetic acid (8 mg, 0.05 mmol) and NaOMe (3 mg, 0.05 mmol) in MeOH (5 cm³). To this solution was then added firstly a solution of sodium tetraphenylborate (51 mg, 0.15 mmol) in MeOH (5 cm³) and secondly a solution of L (33 mg, 0.15 mmol) in MeOH (5 cm³). The resultant white emulsionlike precipitate slowly transformed to a light yellow crystalline product in *ca*. 3 days. Yield: 47 mg (59%); anal. calcd for $C_{86.7}H_{91.8}B_2LaN_5O_{11.7}$: C 67.11, H 5.96, N 4.51; Found: C 65.80, H 5.60, N 4.52. Elemental and powder diffraction analysis indicates possible impurities of other yet unidentified products. # Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

Supplementary Figures

Supplementary Figure 1: Full structure of **2** showing the positions of the triflate anions (red) within the bi-layer structure (green).

Supplementary Figure 2: Full structure of **3** showing the positions of the iodide anions (red), the bi-layer structure (green) and the non-co-ordinating ligands (blue).

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is © The Royal Society of Chemistry 2004

Supplementary Figure 3: View of the full structure of **4** positions of the perchlorate anions (red) within the bilayer structure (green).

Supplementary Figure 4: Full structure of **5** showing the position of the tetraphenylborate anions (red) and the bi-layer structure (green).

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is © The Royal Society of Chemistry 2004