Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004

Supporting Information

Stoichiometric and Catalytic Reductive Aldol Cyclizations of Alkynediones Induced by Stryker's
Reagent
Pauline Chiu,* Sze Kar Leung
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China pchiu@hku.hk

Contents:

1. Reductive aldol reactions and full characterization of products: $\mathbf{3 a} \mathbf{- f}, \mathbf{4 a}, \mathbf{4 d}-\mathbf{f}, \mathbf{5 b} \mathbf{- c}, \mathbf{6 b}, \mathbf{6 f}$; preparation and characterization of $\mathbf{8}$
2. Experimental procedures for preparation of alkynedione substrates 2a and 2d, full characterization of 2a-f
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds $\mathbf{3 a - f}, \mathbf{4 a}, \mathbf{4 d}, \mathbf{4 e}$ (Separate file). (S17-S45)
4. Crystal reports and ORTEP diagrams for 3b and 2,4-DNPH-3c (Separate file) (S46-S47)

Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2004General Experimental. Toluene was freshly distilled from CaH_{2} under argon. Tetrahydrofuran (THF) was distilled from $\mathrm{Na} / \mathrm{Ph}_{2} \mathrm{CO}$ ketyl under argon. Prior to use in reactions, dry solvents were degassed by bubbling argon into the solvent for 30 minutes. $\left[\mathrm{Ph}_{3} \mathrm{PCuH}\right]_{6} \mathbf{1}$ was synthesized. ${ }^{1}$ All glassware and syringes used in the experiments were oven-dried at $120^{\circ} \mathrm{C}$ for at least 4 hours. Syringes were cooled in a dessicator. Over-dried glassware were assembled hot and allowed to cool under a stream of dry argon. Solvents and reagents in solution were transferred with syringes and cannulae using standard inert atmosphere techniques. Infrared spectra were recorded on a Bio-Rad FT-IR spectrometer as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{DCM})$, from $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$. Band intensities and features are designated as follows: $\mathrm{s}=\mathrm{strong}, \mathrm{m}=$ medium, $\mathrm{w}=\mathrm{weak}$, $\mathrm{br}=$ broad, sh=shoulder. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX 300, AV 400, DRX 500, or AV 600 spectrometers, operating at $300 \mathrm{MHz}, 400 \mathrm{MHz}, 500 \mathrm{MHz}$, or 600 MHz respectively for ${ }^{1} \mathrm{H}$, and at $75 \mathrm{MHz}, 100 \mathrm{MHz}, 125 \mathrm{MHz}$, or 150 MHz respectively for ${ }^{13} \mathrm{C}$. All spectra were calibrated at $\delta 7.26$ or $\delta 0.00 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ spectra (residual CHCl_{3} or TMS respectively), and $\delta 77.03$ or $\delta 0.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ spectra. Spectral features are designated as follows: $\mathrm{m}=$ multiplet, $\mathrm{q}=\mathrm{quartet} \mathrm{t}=\mathrm{triplet},, \mathrm{d}=$ doublet, $\mathrm{s}=$ singlet and br=broad. Low and high resolution mass spectra were recorded on a Finnigan MAT90 mass spectrometer. For each sample, high resolution mass spectral data was obtained for the molecular ion, or next largest fragment thereof. X-ray crystallographic analyses were obtained on a MAR Imaging Plate diffractometer.

Table 1, entry 1.1:

General experimental procedure A: Reductions using stoichiometric 1.

Reagent $1(56 \mathrm{mg}, 0.171 \mathrm{mmol})$ was transferred into an oven-dried 5 mL round-bottomed flask in a dry-box. The flask was capped with a septum, then removed from the dry-box. Anhydrous and degassed toluene (1 mL) was added and the solution was cooled to $-40^{\circ} \mathrm{C}$. Substrate $\mathbf{2 a}(27.2 \mathrm{mg}, 0.115$ mmol) in 1 mL anhydrous and degassed toluene was added via cannula. The progress of the reaction was followed by TLC. After 15 min , the reaction was quenched by adding 1 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for a further 2 hr , open to air. The resulting mixture was filtered through a silica gel pad and the pad was washed with EtOAc (10 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc ($5 \mathrm{~mL} \times 2$). The combined organic extracts were dried over MgSO_{4} and concentrated in vacuo. Flash chromatography (0 to $20 \% \mathrm{EtOAc}$ in hexane) of the residue gave 3a ($14.8 \mathrm{mg}, 54 \%$) and mixture of $\mathbf{4 a}$ to $\mathbf{4 a}$ " was $9: 1(3.56 \mathrm{mg}, 13 \%$ overall isolated yield) as a colorless

[^0]
Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2004oil.

Table 1, entry 1.2:

General experimental procedure B: Reductions using catalytic 1.

Reagent $\mathbf{1}(3.7 \mathrm{mg}, 0.011 \mathrm{mmol})$ was transferred into an oven-dried 5 mL round-bottomed flask in a dry-box. The flask was capped with a septum, then removed from the dry-box. Anhydrous and degassed toluene (1 mL) was added and the solution was cooled to $-40^{\circ} \mathrm{C}$. To the solution was added PMHS ($0.013 \mathrm{~mL}, 0.217 \mathrm{mmol}$), followed by substrate $\mathbf{2 a}(25.0 \mathrm{mg}, 0.106 \mathrm{mmol})$ in toluene (1 mL). The progress of the reaction was monitored by TLC. After 30 minutes, the reaction was quenched by adding 1 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and stirring for further 2 hr , open to air. The resulting mixture was filtered through a silica gel pad and washed with EtOAc (10 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc ($5 \mathrm{~mL} \times 2$). The combined organic extracts were dried over MgSO_{4} and concentrated. Flash chromatography (0 to $20 \% \mathrm{EtOAc}$ in hexane) of the residue gave $\mathbf{3 a}(14.7 \mathrm{mg}, 58 \%), \mathbf{4 a}(9.8 \mathrm{mg}, 28 \%)$ and $\mathbf{4 a} \mathbf{a}^{\prime}(3.9 \mathrm{mg}, 11 \%)$.

3a: R_{f} (40% EtOAc in hexane): 0.25 ; IR (DCM): 3547br (OH), 3063m, 2965m, 2920m, $2890 \mathrm{~m}, 2875 \mathrm{~m}, 1722 \mathrm{~s}\left(\text { ester } \mathrm{C}=\mathrm{O} \text {), }{ }^{2} 1660 \mathrm{~s} \text { (enone } \mathrm{C}=\mathrm{O}\right)^{3}, 1630 \mathrm{~m}, 1370 \mathrm{~m}, 1189 \mathrm{~s}, 1141 \mathrm{~m}, 1077 \mathrm{~m}$, $1029 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.80(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=20.0$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 2.57$ (ddd, $J=6.3,3.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{dd}, J=20.0,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.40(\mathrm{~m}, 1 \mathrm{H})$, 1.27 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.1,170.1,145.3,144.9,94.1,61.6$, 61.1, 43.0, 40.8, 37.8, 27.4, 24.6, $14.2 \mathrm{ppm} ; \quad$ LRMS (20 eV) m/z $238\left[\mathrm{M}^{+}, 13\right], 196$ (5), 165 (92), 147 (13); HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$: 238.1203. Found: 238.1205.

Determination of stereochemistry: The ester carbonyl stretch at significantly lower frequency (1722 cm^{-1}) which did not change upon high dilution indicates intramolecular hydrogen bonding with the hydroxyl group, which is possible only in the cis-fused diastereoisomer. Catalytic hydrogenation converted 3a to $\mathbf{4 a}$ ': and $\mathbf{4 a} \mathbf{a}^{\prime \prime}$, thus all three compounds have the same stereochemistry at the ring fusion.

4a': $\quad R_{f}(30 \%$ EtOAc in hexane): $0.34 ;$ IR (DCM): $3568 \mathrm{br}(\mathrm{OH}), 2966 \mathrm{~m}, 2879 \mathrm{~m}, 1727 \mathrm{sh}$ (ester $\mathrm{C}=\mathrm{O}$), ${ }^{2} 1702 \mathrm{~s}$ (ketone $\mathrm{C}=\mathrm{O}$), ${ }^{4} 1368 \mathrm{~m}, 1203 \mathrm{~m}, 1129 \mathrm{~m}, 1021 \mathrm{~m}, 942 \mathrm{w} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=11.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~m}, 1 \mathrm{H}), 2.27$ $(\mathrm{s}, 3 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.33(\mathrm{~m}$,

[^1]Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
$1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ; \quad{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 208.9,176.6,92.1,62.7,62.6,61.1$, 36.9, 36.8, 34.0, 30.5, 24.5, 23.7, 14.2 ppm; LRMS (20 eV): m/z 240 [M $\left.{ }^{+}, 1\right], 222$ (12), 195 (7), 157 (100); HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 240.1365$. Found: 240.1362 .

Determination of stereochemistry: The ester carbonyl stretch at significantly lower frequency (1702 cm^{-1}) which did not change upon high dilution indicates intramolecular hydrogen bonding with the hydroxyl group, which is possible only in the cis-fused ring system. The methine proton alpha to the acetyl group ($\delta_{\mathrm{H}} 3.05 \mathrm{ppm}$) does not show any noe with the protons of the adjacent ring, indicating that the proton is exo, and the acetyl group must be anti with respect to the hydroxyl group (ref 4a").

4a": $\quad R_{f}(30 \%$ EtOAc in hexane): 0.39; IR (DCM): 3558br (OH), 2965s, 2931s, 2876m, 1708br (ester and ketone $\mathrm{C}=\mathrm{O}$), ${ }^{5} 1365 \mathrm{~s}, 1180 \mathrm{~m}, 1132 \mathrm{~s}, 909 \mathrm{~s} \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.19(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=11.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=13.1,6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.38$ (ddd, $J=13.2,11.2,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.4,176.7,93.0,62.7,61.4,61.0$, 41.3, 36.6, 35.4, 30.9, 27.8, 22.9, 14.2 ppm ; LRMS (20 eV): $m / z 240$ [M $\left.{ }^{+}, 1\right], 220$ (12), 157 (100), 129 (10); HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 240.1358$. Found: 240.1362.
Determination of stereochemistry: The ester carbonyl stretch at significantly lower frequency (1708 cm^{-1}) which did not change upon high dilution indicates intramolecular hydrogen bonding with the hydroxyl group, which is possible only in the cis-fused ring system. The methine proton alpha to the acetyl group showed noe with at least four protons in the adjacent ring $\left(\delta_{\mathrm{H}} 2.74 \mathrm{ppm} \leftrightarrow \delta_{\mathrm{H}} 1.38,1.58\right.$, $1.83,2.27$) indicates that the proton is endo, hence the acetyl group must be syn with respect to the hydroxyl group (ref 4a').

Table 1, entries 2.1, 2.2, 2.3:

[^2]
Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2004According to general procedure A, 2b $(49.9 \mathrm{mg}, 0.200 \mathrm{mmol})$ was treated with $\mathbf{1}(97.9 \mathrm{mg}, 0.300$ mmol) in 1.5 mL anhydrous toluene. After workup and flash chromatography ($10-25 \%$ EtOAc in hexane), 3b ($24.2 \mathrm{mg}, 48 \%$) was obtained as white solid, and $\mathbf{5 b}(7.55 \mathrm{mg}, 16 \%)$ was obtained as a colorless oil.

According to general procedure A, reduction of $\mathbf{2 b}(47.7 \mathrm{mg})$ at room temperature gave $\mathbf{3 b}$ (26.8 $\mathrm{mg}, 60 \%$) and $\mathbf{5 b}$ ($10.4 \mathrm{mg}, 23 \%$).

According to general procedure B, $\mathbf{2 b}(35.2 \mathrm{mg}, 0.141 \mathrm{mmol})$ was treated with $\mathbf{1}(4.6 \mathrm{mg}, 0.014$ $\mathrm{mmol})$ and PMHS ($0.02 \mathrm{~mL}, 3.33 \mathrm{mmol}$) in 1.5 mL anhydrous toluene. After workup and flash chromatography, $\mathbf{3 b}(19.9 \mathrm{mg}, 56 \%)$ and $\mathbf{6 b}(5.7 \mathrm{mg}, 16 \%)$ were obtained.

3b: $R_{f}\left(30 \%\right.$ EtOAc in hexane): $0.22 ; \mathrm{mp}=66-68^{\circ} \mathrm{C} ; \quad$ IR (DCM): $3574 \mathrm{br}(\mathrm{OH}), 3064,3064 \mathrm{w}$, $2940 \mathrm{~m}, 2860 \mathrm{~m}, 1718 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$), ${ }^{2} 1672 \mathrm{~s}$ (enone $\mathrm{C}=\mathrm{O}$), $1613 \mathrm{~s}, 1450 \mathrm{~m}, 1370 \mathrm{~s}, 1035 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.83(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{dd}, J=18.4,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.52(\mathrm{dt}, J=13.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, J=18.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (dm, $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (ddd, $J=13.1,12.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-1.10(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 197.2,174.6,146.1$, 83.7, 60.7, 55.9, 40.5, 34.6, 32.5, 27.7, 22.4, 21.6, $14.2 \mathrm{ppm} ;$ LRMS (20 eV) $m / z 234\left[\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 8\right]$, 161 (16), 153 (100), 136 (77), 105 (47); HRMS (EI): Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 234.1256$. Found: 234.1255.

Structure determination: The structure and stereochemistry was unambiguously determined by crystallographic analysis. Crystals were obtained from a hexane and ethyl acetate solution. Crystal data: $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}\right] ; M=252.30$, Triclinic, $a=7.3680(15) \AA, b=9.1860(18) \AA, c=10.640(2) \AA, \mathrm{V}=$ $683.7(2) \AA^{3}, \mathrm{~T}=301 \mathrm{~K}$, space group $\mathrm{P} \overline{\mathrm{I}}, \mathrm{Z}=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.089 \mathrm{~mm}^{-1}, 3246$ reflections measured, 1933 unique $\left(\mathrm{R}_{\text {int }}=0.0234\right)$ which were used in all calculations. $\mathrm{R} 1=0.0743$ (all data). The final $w R 2$ was 0.1917 (all data).

5b: $\quad R_{f}\left(25 \%\right.$ EtOAc in hexane): $0.60 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 3.40 (br, d, $J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}) 2.52(\mathrm{dm}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 2.04$ $(\mathrm{m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 198.9,175.1,155.2,60.8,60.4,38.4,35.6,32.2,30.7,29.7,26.9,23.5,14.3 \mathrm{ppm}$. The spectra features were identical to previously obtained data. ${ }^{6}$

6b: $\quad R_{f}\left(25 \%\right.$ EtOAc in hexane): $0.30 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.74(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{dm}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{qd}, J=7.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{td}, J=13.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz NMR, CDCl_{3}): $\delta 206.7,198.0,170.1,142.8,133.9,61.3,60.5,40.7,37.7,36.2,27.2,26.4$, $22.2,13.9 \mathrm{ppm}$. The spectra features were identical to previously obtained data. ${ }^{2}$

Table 1, entries 3.1-2:

[^3]Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

According to general procedure A, 2c ($32.6 \mathrm{mg}, 0.118 \mathrm{mmol}$) was treated with $\mathbf{1}(57.8 \mathrm{mg}, 0.177$ mmol) in 1.5 mL anhydrous toluene. After workup and flash chromatography ($10-25 \%$ EtOAc in hexane), $\mathbf{3 c}(15.7 \mathrm{mg}, 48 \%)$ and $\mathbf{5 c}(4.9 \mathrm{mg}, 16 \%)$ were obtained as colorless oils.

According to general procedure B, 2c ($32.2 \mathrm{mg}, 0.117 \mathrm{mmol}$) was treated with $\mathbf{1}(4.0 \mathrm{mg}, 0.012$ mmol) and PMHS ($0.014 \mathrm{~mL}, 0.233 \mathrm{mmol}$) in 1.5 mL anhydrous toluene. After workup and flash chromatography, $\mathbf{3 c}(21.1 \mathrm{mg}, 60 \%)$ and $\mathbf{5 c}(1.8 \mathrm{mg}, 6 \%)$ were obtained as colorless oils.

3c: $R_{f}(30 \%$ EtOAc in hexane): $0.30 ;$ IR (DCM): 3692br (OH), 3055m, 2998s, 1722s (ester $\mathrm{C}=\mathrm{O}$), ${ }^{2}$ 1656s (enone $\mathrm{C}=\mathrm{O}$) $,{ }^{3}, 1551 \mathrm{~m}, 1376 \mathrm{~m}, 1197 \mathrm{~m}, 1179 \mathrm{~m}, 1097 \mathrm{~m}, 1030 \mathrm{w} \mathrm{cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.98(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{qd}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H})$, 3.07 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (dd, $J=19.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=19.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ (m, 1H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.12(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.7,174.4,147.4,143.7,139.0,119.3,88.3,61.5,60.7,39.4,34.4,31.4,29.9$, 27.2, 25.3, 14.1 ppm ; LRMS (20 eV) m/z 278 [M, 1$]$, 260 (30), 214 (15), 187 (100), 171 (17), 143 (24); HRMS (EI): Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$: 278.1518. Found: 278.1516.

Structure determination: The structure was unambiguously determined by crystallographic analysis of its dinitrophenylhydrazone derivative. The 3c-2,4-DNP derivative was synthesized from 3c as follows. To a solution of the $\mathbf{3 c}(31.4 \mathrm{mg}, 0.113 \mathrm{mmol})$ in ethanol $(0.75 \mathrm{~mL})$ was added 2,4-dinitrophenylhydrazine ($38.6 \mathrm{mg}, 0.195 \mathrm{mmol}$) and 3 N HCl (3 drops). The mixture was allowed to stir at room temperature overnight. Solvent was removed in vacuo. Ether (3 mL) was added followed by $10 \% \mathrm{NaHCO}_{3}(1.5 \mathrm{~mL})$. The aqueous layer was extracted by ether ($3 \times 3 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Flash chromatography ($10-25 \%$ EtOAc in hexane) of the residue gave 3c-2,4-DNP (37.2 mg , 72%).

3c-2,4-DNP: $R_{f}\left(30 \%\right.$ EtOAc in hexane): $0.38 ; \mathrm{mp}=128^{\circ} \mathrm{C}, \quad \operatorname{IR}(\mathrm{DCM}): 3691 \mathrm{w}(\mathrm{OH}), 2959 \mathrm{~m}$, 2931m, 1723s (ester C=O), ${ }^{2}, 1618 \mathrm{~m}, 1595 \mathrm{~m}, 1337 \mathrm{~s}, 1313 \mathrm{w} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $11.22(\mathrm{~s}, 1 \mathrm{H}), 9.15(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=9.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{t}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (s, br, 1H), 4.23-4.11 (m, 2H), 3.16 (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.00 (dd, $J=19.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $J=19.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, \mathrm{br}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (ddd, $J=14.1,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,150.7,144.3,140.9,139.8,139.1,138.4$, $130.4,130.0,129.5,123.6,119.8,115.9,89.4,62.1,60.7,39.4,34.8,31.5,29.6,25.4,14.2,13.8 \mathrm{ppm}$; LRMS (20eV): $m / z 458$ [$\left.\mathrm{M}^{+}, 29\right], 440$ (36), 423 (100), 405 (42), 367 (27), 331 (55), 316 (24), 274 (29), 258 (37), 212 (21); HRMS (EI): Calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}\left[\mathrm{M}^{+}\right]: 458.1800$ Found: 458.1801. Orange crystals were obtained from a hexane and ethyl acetate solution. Crystal data: $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7}\right]$;

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004
$M=458.47$, Triclinic, $a=7.460(2) \AA, b=8.609(2) \AA, c=18.302(4) \AA, \mathrm{V}=1140.9(4) \AA^{3}, \mathrm{~T}=301 \mathrm{~K}$, space group $\mathrm{P} \overline{1}, \mathrm{Z}=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=0.101 \mathrm{~mm}^{-1}, 5057$ reflections measured, 3078 unique ($R_{\text {int }}=0.0194$) which were used in all calculations. $\mathrm{R} 1=0.0767$ (all data). The final $w R 2$ was 0.1912 (all data).

5c: $\quad R_{f}(20 \%$ EtOAc in hexane $): 0.50 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.42(\mathrm{td}, J=5.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.12(\mathrm{~m}, 5 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.79$ $(\mathrm{m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}) .1 .26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8199.2,174.9,157.5$, $140.8,136.9,120.6,62.8,62.8,60.7,35.2,34.9,32.2,31.7,30.5,26.2,25.9,14.2 \mathrm{ppm}$. The spectra features were identical to previously obtained data. ${ }^{7,8}$

Table 1, entry 4:

According to general procedure A, 2d $(42.9 \mathrm{mg}, 0.208 \mathrm{mmol})$ was treated with $\mathbf{1}(10.2 \mathrm{mg}, 3.12$ mmol) in 1.5 mL anhydrous toluene. After workup and flash chromatography ($10-25 \%$ EtOAc in hexane), 3d ($22.1 \mathrm{mg}, 51 \%$), 4d' ($5.7 \mathrm{mg}, 13 \%$) and $\mathbf{4 d}$ " ($1.3 \mathrm{mg}, 3 \%$) were obtained as colorless oils.

According to general procedure B, $\mathbf{2 d}(21.7 \mathrm{mg}, 0.105 \mathrm{mmol})$ was treated with $\mathbf{1}(4.0 \mathrm{mg}, 0.012$ $\mathrm{mmol})$ and PMHS ($0.012 \mathrm{~mL}, 0.200 \mathrm{mmol}$) in 1.5 mL anhydrous toluene. After workup and flash chromatography, $\mathbf{3 d}(12.2 \mathrm{mg}, 56 \%), \mathbf{4 d}^{\prime}(3.5 \mathrm{mg}, 16 \%)$ and $\mathbf{4 d} \mathbf{d}^{\prime \prime}(2.0 \mathrm{mg}, 9 \%)$ were obtained as colorless oils.

3d: $R_{f}(20 \%$ EtOAc in hexane): 0.55; IR (DCM): 3481br (OH), 3051w, 2936s, 2930sh, 2866m, 1648s (enone C=O), ${ }^{3} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.86(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 2.41$ $(\mathrm{m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.62(\mathrm{~m}$, $2 \mathrm{H}), 1.57$ (dd, $J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47$ (m, 3H), 1.23 (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.18 (m, 1H), 0.94 ($\mathrm{s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.7,143.4,143.1,74.3,36.1,35.8,35.6,29.5,26.8,24.0$, 22.3, 21.4, $21.2 \mathrm{ppm} ; \quad$ LRMS (20 eV): $m / z 208$ [$\left.\mathrm{M}^{+}, 100\right], 190$ (85), 175 (41), 152 (13); HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]:$208.1463. Found: 208.1461.

Determination of stereochemistry: Catalytic hydrogenation converts $\mathbf{3 d}$ to $\mathbf{4 d}$ 'and $\mathbf{4 d} \mathbf{d}$. Thus all three compounds have the same stereochemistry at the fused rings. From the analysis of the nmr data of $\mathbf{4 d}$ 'and $\mathbf{4 d}$ ", the ring fusion was determined to be cis (vide infra).

4d': R_{f} (30% EtOAc in hexane): 0.74 ; IR (DCM): 3477br (OH), 2938s, 2868sh, 1693 s (ketone $\mathrm{C}=\mathrm{O}),{ }^{4} 1450 \mathrm{w}, 1401 \mathrm{w}, 1363 \mathrm{~m}, 1330 \mathrm{~m}, 1188 \mathrm{~m}, 1175 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.08(\mathrm{~s}$, $1 \mathrm{H}), 3.23(\mathrm{dd}, J=12.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.50(\mathrm{~m}$, $4 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 216.8$,

[^4]Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
$73.7,49.9,37.4,35.8,33.8,33.2,31.8,25.8,24.0,21.8,21.3,21.0 \mathrm{ppm} ; \quad$ LRMS $(20 \mathrm{eV}): m / z 210\left[\mathrm{M}^{+}\right.$, 1], 192 (44), 177 (70), 154 (74), 149 (94), 134 (44), 112 (100); HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}$ [$\left.\mathrm{M}^{+}\right]: 210.1620$. Found: 210.1621.
Determination of stereochemistry: The only stereoisomer with a conformer that would have noe correlations of the axial methine proton alpha to the acetyl group ($\delta_{\mathrm{H}} 3.23 \mathrm{ppm}, J=12.6,3.5 \mathrm{~Hz} \leftrightarrow \delta_{\mathrm{H}}$ $1.38,1.73 \mathrm{ppm}$) with protons of the adjacent ring and no noe with the angular methyl group is the one with all syn stereochemistry as shown

4d": $\quad R_{f}(30 \%$ EtOAc in hexane): 0.28 ; IR (DCM): $3617 \mathrm{~m}, 3482 \mathrm{br}(\mathrm{OH}), 2935 \mathrm{~s}, 2868 \mathrm{~m}, 1701 \mathrm{~s}$ (ketone $\mathrm{C}=\mathrm{O}$) ${ }^{4}{ }^{4} 1683 \mathrm{~s}, 1450 \mathrm{~m}, 1362 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.95(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.77(\mathrm{dd}$, $J=12.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.43$ (m, 6H), $1.33(\mathrm{dm}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{dm}, J=13.7,1 \mathrm{H}), 1.05(\mathrm{dm}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 215.0,75.3,55.0,38.0,36.4,33.1,31.5,28.4,26.4,22.5,21.3$, 20.9, $20.8 \mathrm{ppm} ; \quad$ LRMS (20 eV): m/z 210 [$\left.\mathrm{M}^{+}, 5\right], 192$ (59), 177 (66), 149 (86), 112 (100); HRMS (EI): Calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 210.1617. Found: 210.1620.
Determination of stereochemistry: From the catalytic hydrogenation results, $\mathbf{4 d}$ " must also have a cis ring fusion. The only other cis fused stereoisomer possible has the acetyl group anti to the hydroxyl group. This is confirmed by the observation of the noe correlation between the axial methine proton alpha to the acetyl group with the angular methyl group $\left(\delta_{\mathrm{H}} 2.77, J=12.2,3.9 \mathrm{~Hz} \leftrightarrow \delta 1.01\right)$ which shows that the relative stereochemistry of these groups is syn.

Table 1, entry 5:

According to general procedure A, 2e ($39.7 \mathrm{mg}, 0.207 \mathrm{mmol}$) was treated with $\mathbf{1}(10.1 \mathrm{mg}, 3.09$ mmol) in 1.5 mL anhydrous toluene. After workup and flash chromatography ($10-25 \% \mathrm{EtOAc}$ in hexane) cis-3e ($19.7 \mathrm{mg}, 49 \%$), trans-3e ($5.2 \mathrm{mg}, 13 \%$), $\mathbf{4 e}$ ' ($4.5 \mathrm{mg}, 11 \%$) and $\mathbf{4 e "}(1.2 \mathrm{mg}, 3 \%)$ were obtained as colorless oils.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
According to general procedure B, 2e($26.8 \mathrm{mg}, 0.140 \mathrm{mmol})$ was treated with $\mathbf{1}(5.0 \mathrm{mg}, 0.015$ mmol) and PMHS ($0.017 \mathrm{~mL}, 0.283 \mathrm{mmol}$) in 1.5 mL anhydrous toluene. After workup and flash chromatography, cis-3e ($10.6 \mathrm{mg}, 39 \%$), trans-3e ($3.0 \mathrm{mg}, 14 \%$), $\mathbf{4 e} \mathrm{e}^{\mathrm{\prime}}(6.0 \mathrm{mg}, 22 \%$) and $\mathbf{4 e}$ " (1.6 mg , 6%) were obtained as colorless oils.
cis-3e: $R_{f}(30 \%$ EtOAc in hexane): 0.54 ; IR (DCM): $3505 \mathrm{br}(\mathrm{OH}), 3059 \mathrm{w}, 2940 \mathrm{~s}, 2863 \mathrm{~m}$, 1650 s (enone C=O), ${ }^{3} 1226 \mathrm{~m}, 1159 \mathrm{~m}, 1024 \mathrm{~m}, 957 \mathrm{w}, 561 \mathrm{w} \mathrm{cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.89(\mathrm{t}$, $J=3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 2.37-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.34$ (m, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.2,144.3,143.9,72.2,39.4,34.0,27.4,26.7,26.6$, 24.3, 21.5, 21.0 ppm ; LRMS (20 eV): m/z 194 [$\left.\mathrm{M}^{+}, 50\right]$, 176 (52), 161 (18), 151 (100) 138 (40), 133 (14); HRMS (EI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]:$194.1307. Found: 194.1362.

Determination of stereochemistry: Catalytic hydrogenation converts cis-3e into $\mathbf{4 e}$ ". Thus these two compounds have the same stereochemistry at the ring fusion. The ring junction was deduced to be cis in cis-3e by the inference from the cis stereochemistry of $\mathbf{4 e} \mathbf{e}^{\prime \prime}$ (vide infra).
trans-3e: $\quad R_{f}(30 \%$ EtOAc in hexane): 0.62; IR (DCM): 3540br (OH), 3055w, 2937s, 2861 m , 1660 s (enone C=O), ${ }^{3} 1227 \mathrm{~m}, 960 \mathrm{~s} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.72(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H})$, $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{qt}, J=13.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dm}, J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=12.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{dm}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.24-1.38(\mathrm{~m}$, $4 \mathrm{H}), 1.10(\mathrm{td}, J=13.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.7,145.7,141.0,69.1$, 43.9, 35.5, 27.5, 27.1, 27.1, 26.3, 23.9, 21.5 ppm ; LRMS (20 eV): m/z 194 [$\left.\mathrm{M}^{+}, 28\right], 176$ (100), 161 (29), 151 (61), 138 (13); HRMS (EI): Calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ [M $\left.{ }^{+}\right]:$194.1307. Found: 194.1307.

Determination of stereochemistry: Catalytic hydrogenation converts trans-3e into $4 \mathbf{e}^{\prime}$. Thus these two compounds have the same stereochemistry at the ring fusion. The ring junction was deduced to be trans in trans-3e by inference from the stereochemistry of $\mathbf{4 e}$ ' whose structure had been previously determined. ${ }^{8}$

4e': ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.47(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=12.4,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.55-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.33(\mathrm{dt}, J=13.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~m}, 3 \mathrm{H}), 1.18$ (ddd, $J=16.3,16.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{ttd}, J=12.2,3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. The spectra features were identical to previously obtained data. ${ }^{9}$

4 e ": $R_{f}(40 \%$ EtOAc in hexane): 0.50 ; IR (DCM): 3684w, $3599 \mathrm{br}(\mathrm{OH}), 3488 \mathrm{w}, 2936 \mathrm{~s}, 2864 \mathrm{~m}$, 1702s (ketone C=O), ${ }^{4} 1303 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.05$ (s, br, 1 H), $2.42(\mathrm{dd}, J=13.1$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dt}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 6 \mathrm{H})$, 1.48-1.34 (m, 5H), $1.26(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 214.1,73.8,61.0,43.4,31.4$, 28.2, 27.1, 27.0, 26.5, 25.6, 21.3, $20.1 \mathrm{ppm} ; ~ L R M S ~(20 ~ e V): ~ m / z ~ 196 ~\left[\mathrm{M}^{+}, 14\right], 178$ (62), 135 (100), 120 (26), 111 (43), 98 (47); HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$ [M ${ }^{+}$]: 196.1455. Found: 196.1463.
Determination of stereochemistry: The ring fusion must be cis since no other trans-fused decalin

[^5]Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
isomer (other than $\mathbf{4 e}^{\prime}$) would have the methine proton alpha to the acetyl group ($\delta_{\mathrm{H}} 2.42, J=13.1,3.7$ Hz) in the axial position. The noe correlation of this proton with the proton at the ring junction (δ_{H} $2.42 \leftrightarrow 1.58$) is only possible when both protons are exo, thus the acetyl group must be anti with respect to the hydroxyl group.

Table 1, entries 6.1-2:

According to general procedure A, $\mathbf{2 f}(29.9 \mathrm{mg}, 0.197 \mathrm{mmol})$ was treated with $\mathbf{1}(9.6 \mathrm{mg}, 0.295$ $\mathrm{mmol})$ in 1.5 mL anhydrous toluene. After workup and flash chromatography ($15-25 \%$ EtOAc in hexane), $\mathbf{3 f}(18.8 \mathrm{mg}, 62 \%)$ and $\mathbf{4 f}(4.0 \mathrm{mg}, 13 \%)$ were obtained as colorless oils.

According to general procedure B, $\mathbf{2 f}(32.0 \mathrm{mg}, 0.211 \mathrm{mmol})$ was treated with $\mathbf{1}(6.9 \mathrm{mg}, 0.021$ mmol) and PMHS ($0.025 \mathrm{~mL}, 0.421 \mathrm{mmol}$) in 1.5 mL anhydrous toluene. After workup and flash chromatography, $\mathbf{3 f}(14.9 \mathrm{mg}, 46 \%)$, and $\mathbf{6 f}(7.8 \mathrm{mg}, 24 \%)$ were obtained as colorless oils.

3f: $R_{f}(30 \%$ EtOAc in hexane): 0.51 ; IR (DCM): 3503br (OH), 2946w, 2915sh, 1652 s (enone $\mathrm{C}=\mathrm{O}),{ }^{3} 1622 \mathrm{sh}, 1468 \mathrm{~m}, 1388 \mathrm{~m}, 1320 \mathrm{~m}, 1220 \mathrm{w}, 897 \mathrm{w} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.91(\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}$, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.1,143.6,143.4,70.1,37.7,28.6,26.7,26.4,19.0 \mathrm{ppm}$; LRMS (20 eV): $m / z 154\left[\mathrm{M}^{+}, 16\right], 125$ (66), 97 (63), 83 (70); HRMS (EI): Calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ $\left[\mathrm{M}^{+}\right]: 154.0996$. Found: 154.0994.

4f: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.94(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ $(\mathrm{s}, 3 \mathrm{H}), 1.65-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{dm}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. The spectra features were identical to previously obtained data. ${ }^{9}$

6f: $\quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.66(\mathrm{~m}, 1 \mathrm{H}), 5.96(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~m}$, $5 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{qt}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. The spectra features were identical to literature values. ${ }^{10}$

Epoxidation of 3d

[^6]Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

To a solution of $\mathbf{3 d}(0.011 \mathrm{~g}, 0.058 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added $10 \% \mathrm{NaOH}(0.013 \mathrm{~mL}$, $0.032 \mathrm{mmol})$ and $50 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.01 \mathrm{~mL}, 0.347 \mathrm{mmol})$. The reaction was stirred at room temperature and diluted with ether. The organic phase was washed with water ($3 \times 1 \mathrm{~mL}$) and dried over MgSO_{4}. The solvent was evaporated in vacuo. The residue was purified by flash chromatography (10% EtOAc in hexane) to afford epoxide $\mathbf{8}(0.012 \mathrm{~g}, 90 \%)$ as a white solid.

8: $R_{f}(30 \%$ EtOAc in hexane): 0.61; IR (DCM):): 3463br (OH), 2971s, 2934m, 2869m, 1693s (ketone $\mathrm{C}=\mathrm{O}$), ${ }^{11} 1360 \mathrm{~m} \mathrm{~cm}^{-1} ; 3463(\mathrm{OH}), 2971,2934,2869,1693 \mathrm{~s}$ (ketone $\mathrm{C}=\mathrm{O}$), ${ }^{4} 1360$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 3.61(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.17-1.89(\mathrm{~m}, 3 \mathrm{H})$, 1.70 (ddd, $J=14.0,4.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 210.8,77.6,72.8,66.44,57.6,35.5,35.3,32.0,27.8,26.9,22.2,21.2,21.0,20.9$ ppm; LRMS (20 eV): $m / z 224\left[\mathrm{M}^{+}, 1\right], 112$ (100); HRMS (EI): $m / z \operatorname{calcd} \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 224.1412$ Found: 224.1412.

Determination of stereochemistry: Stereochemically, both due to possible directing effects of the hydroxyl group and the preference of the incoming reagent to approach from the exo face suggested that the epoxide is exo. This is confirmed by the considering the minimized conformations of both the epoxide isomers. ${ }^{12}$ The minimized conformation of the epoxide with relative stereochemistry as shown in $\mathbf{8}$ has the methine proton of the epoxide and the vicinal methylene group with dihedral angles of 51° and 63°, which should have ${ }^{3} \mathrm{~J}$ couplings in the order of $1-3 \mathrm{~Hz}$. This is what is observed (δ_{H} $3.22, J=2.3 \mathrm{~Hz}$). The endo epoxide isomer has been calculated to have the corresponding methine proton of the epoxide and the vicinal methylene group with dihedral angles dihedral angles of 93° and 21°, which would be expected to have ${ }^{3} \mathrm{~J}$ couplings in the order of 7 Hz .

Preparation of Alkynedione Substrates
Preparation of alkynedione 2a

[^7]Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

To a suspension of NaH (60% in oil, $0.158 \mathrm{~g}, 6.583 \mathrm{mmol}$, washed by pentane three times) in THF (10 mL) was added ethyl 2-oxocyclopentane carboxylate ($0.42 \mathrm{~mL}, 2.843 \mathrm{mmol}$). The reaction was stirred at room temperature for 30 min and mesylate $(1.060 \mathrm{~g}, 3.984 \mathrm{mmol})$ in THF (5 mL) was added. The reaction mixture was allowed to stir at room temperature overnight. The crude mixture was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with ether ($3 \times 10 \mathrm{~mL}$). The combined organics were washed with brine $(10 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was evaporated in vacuo and the residue was purified by flash chromatography (10% EtOAc in hexane) to afford $9(1.545 \mathrm{~g}, 72 \%$) as a colourless oil. 9: $R_{f}(40 \%$ EtOAc in hexane): 0.58; IR (DCM): 2986m, 2932m, 2893m, 2250w ($\mathrm{C} \equiv \mathrm{C}$), 1753s (cyclopentanone $\mathrm{C}=\mathrm{O}$), 1727 s (ester $\mathrm{C}=\mathrm{O}$), ${ }^{13} 1449 \mathrm{~m}, 1102 \mathrm{~s}, 1031 \mathrm{~s} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.77-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=3.5$, $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.7,170.4,92.9,82.1,80.7,71.7,67.2,61.7$, 61.5, 59.0, 58.9, 38.4, 32.6, 23.4, 22.3, 19.8, $14.0 \mathrm{ppm} ;$ LRMS (20 eV): $\mathrm{m} / \mathrm{z} 221$ [M^{+}-OMEM, 221], 193 (46), 177 (18), 164 (25), 147 (44), 125 (17), 119 (6); HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}$ [${ }^{+}$-OMEM]: 221.1175. Found: 221.1178.

A mixture of PPTS $(0.058 \mathrm{~g}, 0.229 \mathrm{mmol})$ and $9(0.619 \mathrm{~g}, 1.879 \mathrm{mmol})$ in t-BuOH $(20 \mathrm{~mL})$ was refluxed for 3 hr . The reaction mixture was cooled to room temperature and water (5 mL) was added. The reaction mixture was extracted by ether ($3 \times 30 \mathrm{~mL}$), dried over MgSO_{4} and evaporated in vacuo. The residue was purified by flash chromatography (20% EtOAc in hexane) to afford $\mathbf{1 0}$ ($0.331 \mathrm{~g}, 74 \%$) as a colourless oil. 10: $R_{f}(30 \% \mathrm{EtOAc}$ in hexane): 0.22; IR (DCM): 3600br (OH), 2982m, 2936m, $2892 \mathrm{~m}, 2877 \mathrm{~m}, 1752 \mathrm{~s}$ (cyclopentanone C=O), 1727s (ester C=O), ${ }^{13} 1376 \mathrm{w}, 1326 \mathrm{~m}, 1230 \mathrm{~m}, 898 \mathrm{w} \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.42(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.48-2.40 (m, 2H), 2.29-2.20 (m, 2H), 2.09-1.98 (m, 2H), $1.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 213.4,170.5,84.8,79.6,61.7,58.9,58.1,38.3,32.6,24.5$, 23.3, 19.7, $14.0 \mathrm{ppm} ; \quad$ LRMS (20 eV): $m / z 238$ [$\left.\mathrm{M}^{+}, 4\right], 220$ (4), 164 (53), 147 (100); HRMS (EI):

[^8]Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004
m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$: 238.1200. Found: 238.1205.

To a suspension of PDC ($0.622 \mathrm{~g}, 1.653 \mathrm{mmol}$) and MS $4 \AA(1 \mathrm{~g})$ in DCM $(20 \mathrm{~mL})$ was added $\mathbf{I}-3$ $(0.197 \mathrm{~g}, 8.269 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1.5 hr . The reaction mixture was diluted with ether (20 mL) and filtered through a celite pad (1 inch). The pad was washed with ether and the combined filtrate was concentrated in vacuo. The residue was purified by flash chromatography (20% EtOAc in hexane) to afford $\mathbf{2 a}(0.1718 \mathrm{~g}, 88 \%$) as a colourless oil. 2a: $R_{f}(30 \%$ EtOAc in hexane): 0.54; IR (DCM): 2982m, $2978 \mathrm{~m}, 2890 \mathrm{~m}, 2216 \mathrm{~m}$ $(\mathrm{C}=\mathrm{C}), 1754 \mathrm{~s}$ (cyclopentanone $\mathrm{C}=\mathrm{O}$), 1728 s (ester $\mathrm{C}=\mathrm{O}$), ${ }^{13} 1677 \mathrm{~s}$ (ynone $\mathrm{C}=\mathrm{O}$), $1229 \mathrm{~s}, 1152 \mathrm{~m}, 1026 \mathrm{~m}$ $\mathrm{cm}^{-1} ;{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.8,184.0,169.8,88.6,82.7,61.9,58.4,37.9,32.7,32.6,23.4,19.7$, $13.9 \mathrm{ppm} ;$ LRMS (20 eV): m/z 236 [$\left.\mathrm{M}^{+}, 21\right], 221$ (10), 207 (36), 190 (52), 179 (27), 163 (100), 147 (26), 135 (66), 121 (29); HRMS (EI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]: 236.1051$. Found: 236.1049.

Alkynediones $\mathbf{2 b}$ and $\mathbf{2 c}$ were synthesized by routes similar to the synthesis of $\mathbf{2 a}$, starting from ethyl 2-oxocyclohexanecarboxylate and ethyl 4-methyl-7-oxocyclohept-3-enecarboxylate ${ }^{14}$ respectively.

2b: colourless oil. R_{f} ($30 \% \mathrm{EtOAc}$ in hexane): 0.29 ; IR (DCM): 2951m, 2870w, $2215 \mathrm{~m}(\mathrm{C} \equiv \mathrm{C}), 1721 \mathrm{~s}$ (ester $\mathrm{C}=\mathrm{O}$), ${ }^{13} 1712 \mathrm{~s}$ (ketone $\mathrm{C}=\mathrm{O}$), 1678 s (ynone $\mathrm{C}=\mathrm{O}$) $1440 \mathrm{~m}, 1204 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.22(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.87$ (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dq}, J=13.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.3,184.3,170.0,88.8,83.5,61.9,59.8,40.6,35.6,32.7$, 27.2, 25.0, 22.2, $14.6 \mathrm{ppm} ; \quad \operatorname{LRMS}(20 \mathrm{eV}) \mathrm{m} / \mathrm{z} 250\left[\mathrm{M}^{+}, 6\right], 221$ (16), 204 (57), 177 (100), 162 (17), 141 (25), 133 (20), 113 (15); HRMS (EI): m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ [M $\left.{ }^{+}\right]: 250.1205$. Found: 250.1203.

2c: colourless oil. $R_{f}(30 \%$ EtOAc in hexane): 0.60; IR (DCM): 2979m, 2943m, 2214w (C $=\mathrm{C}$), 1736s (ester C=O), 1713s (ketone C=O), 1675s (ynone $\mathrm{C}=\mathrm{O}$), $1467 \mathrm{w}, 1446 \mathrm{~m}, 1418 \mathrm{w}, 1361 \mathrm{~m}, 1230 \mathrm{~m}, 1202 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.46$ (td, $\left.J=6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16$ (qd, $\left.J=7.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 3.29-3.07 (m, 2H), $3.02(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 1 \mathrm{H}) 2.39$ (ddd, $J=$ $17.2,5.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{ddd}, J=17.3,10.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.4,184.2,169.6,139.1,119.7,89.4,83.2,63.9$, 61.9, 39.2, 32.7, 31.2, 30.2, 25.2, 24.2, $14.0 \mathrm{ppm} ; ~ L R M S ~(20 ~ e V): ~ m / z ~ 276 ~[M ~, ~ 5], ~ 233 ~(24), ~ 203 ~(20), ~$

[^9]Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
195 (41), 187 (32), 159 (23), 149 (100), 121 (22); HRMS (EI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right]$: 276.1362. Found: 276.1362.

Preparation of alkynedione 2d

A solution of $\mathbf{1 1}^{15}(3.002 \mathrm{~g}, 12.40 \mathrm{mmol})$ in $\mathrm{DCM}(120 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was treated with 1 M DIBAL-H $(17.0 \mathrm{~mL}, 17.00 \mathrm{mmol})$ for 2 hr . The reaction was quenched with saturated aqueous sodium potassium tartrate $(30 \mathrm{~mL})$ and extracted with DCM ($3 \times 30 \mathrm{~mL}$). The combined organics were dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography (25% EtOAc in hexane) to afford $\mathbf{1 3}(2.261 \mathrm{~g}, 86 \%)$ as a colourless oil. 12: $R_{f}(40 \%$ EtOAc in hexane): 0.60 ; IR (DCM): 2939s, 2888m, 2870m, 2831m, 1708s (aldehyde C=O), $1176 \mathrm{~m}, 1127 \mathrm{~m}, 1091 \mathrm{~m} \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 9.75(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 4 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H})$, $1.59-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 203.3,112.7,64.9,64.6$, 40.6, 39.2, 34.8, 30.4, 27.0, 23.5, 20.8, $19.5 \mathrm{ppm} ;$ LRMS (20 eV): m/z $212\left[\mathrm{M}^{+}, 6\right], 184$ (37), 169 (100), 155 (40), 127 (14), 113 (24); HRMS (EI): m / z calcd $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 212.1412$. Found: 212.1400 .

To a solution of LDA (10.52 mmol) at $-78^{\circ} \mathrm{C}$, was added $\mathrm{TMSCHN}_{2}(2 \mathrm{M}$ in hexane solution, 5.0 mL , 10.0 mmol) dropwise. After stirring for 30 min , a solution of $\mathbf{1 2}(1.715 \mathrm{~g}, 8.092 \mathrm{mmol})$ in THF (10 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 1 hr and then refluxed for a further 3 hr . The reaction was quenched by cold water, extracted by ether ($3 \times 20 \mathrm{~mL}$) and dried over MgSO_{4}. The solvent was evaporated in vacuo and the residue was purified by flash chromatography (10% EtOAc in hexane) on triethylamine-treated silica gel to afford $\mathbf{1 3}$ ($0.909 \mathrm{~g}, 54 \%$) as a colourless oil. The spectral features were identical to previously obtained data. ${ }^{16}$

To a solution of $\mathbf{1 3}(0.235 \mathrm{~g}, 1.129 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added $1.53 \mathrm{M} n-\operatorname{BuLi}(1.1 \mathrm{~mL}, 1.683$

[^10]
Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004
mmol). The solution was stirred for 1 hr followed by the addition of N -methoxy-N-methylacetamide $(0.194 \mathrm{~g}, 1.921 \mathrm{mmol})$. The reaction was quenched by sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with ether (3 $x 20 \mathrm{~mL}$). The combined organics were dried over MgSO_{4} and concentrated in vacuo. The crude was purified by flask chromatography ($10 \% \mathrm{EtOAc}$) on the triethylamine-treated silica gel to afford $\mathbf{1 4}$ as a colourless oil ($0.152 \mathrm{~g}, 54 \%$). 14: $R_{f}(20 \% \mathrm{EtOAc}$ in hexane): 0.54 ; IR (DCM): 2995m, 2943m, 2971m, $2210 \mathrm{w}(\mathrm{C}=\mathrm{C}), 1673 \mathrm{~s}$ (ynone $\mathrm{C}=\mathrm{O}$), $1566 \mathrm{w}, 1513 \mathrm{w} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 3.95-3.88$ (m, 4H), 2.26-2.20 (m, 2H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $4 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 112.7,85.8,67.6,64.9,64.7,41.0,34.5,34.3,30.4$, 23.5, 20.8, 19.2, $13.3 \mathrm{ppm} ; \quad$ LRMS (20eV): m/z $250\left[\mathrm{M}^{+}, 6\right], 207$ (19), 169 (100), 113 (24), 99 (57); HRMS (EI): m / z calcd $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]: 250.1569$. Found: 250.1569 .

A solution of $\mathbf{1 4}(0.152 \mathrm{~g}, 0.610 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was treated with $5 \% \mathrm{HCl}(5 \mathrm{~mL})$ at room temperature. The reaction mixture was neutralized by $50 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, extracted with ether ($3 \times 5 \mathrm{~mL}$) and dried over MgSO_{4}. The solvent was evaporated in vacuo and the residue was purified by flash chromatography (25% EtOAc in hexane) to afford $\mathbf{2 d}\left(0.123 \mathrm{~g}, 98 \%\right.$) as a colourless oil. 2d: R_{f} (30% EtOAc in hexane): 0.46; IR (DCM): 2992w, 2940m, 2971w, 2211m (C=C), 1701s (ketone $\mathrm{C}=\mathrm{O}$), 1671s (ynone C=O), $1559 \mathrm{w}, 1507 \mathrm{w} \mathrm{cm}{ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz): $\delta 2.41-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.35$ (dd, $J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.21$ (ddd, $J=17.0,10.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (ddd, $J=13.9,10.4,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.69-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz): $\delta 214.8,184.8$, 93.5, 81.4, 48.1, 39.0, 38.7, 35.9, 32.7, 27.4, 22.4, 21.0, 14.1 ppm ; LRMS (20eV): $m / z 206\left[\mathrm{M}^{+}, 2\right], 193$ (2), 163 (3), 145 (5), 135 (3), 125 (4), 119 (7), 112 (100); HRMS (EI): m / z calcd $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 206.1308 Found: 206.1307.

Alkynediones $\mathbf{2 e}$ and $\mathbf{2 f}$ were synthesized by routes similar to the synthesis of 2d, starting from ethyl 3-(1,4-dioxaspiro[4.5]dec-6-yl)propionaldehyde ${ }^{17}$, and ethyl 4-(2-methyl[1,3]dioxolan-2-yl)butyraldehyde respectively. ${ }^{18}$

2e: colourless oil; R_{f} (40% EtOAc in hexane): 0.59 ; IR (DCM): 2941 m , 2865w, 2211m (CC), 1707s (ketone C=O), 1673s (ynone C=O) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 2 \mathrm{H}), 2,35-2.29(\mathrm{~m}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.28(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.3$, 184.7, $93.4,81.5,49.0,42.1,34.0$,

[^11]Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
32.7, 279, 27.6, 25.0, $16.7 \mathrm{ppm} ; \quad$ LRMS (20 eV): $m / z 192\left[\mathrm{M}^{+}, 16\right], 159$ (7), 149 (42), 131 (16), 121 (100); HRMS (EI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]$: 192.1150. Found: 192.1146.

2f: colourless oil. R_{f} (30% EtOAc in hexane): 0.26; IR (DCM): 2963m, 2947w, 2900w, 2212m (CC), 1714s (ketone C=O), 1674s (ynone C=O), 1360w, $1233 \mathrm{w}, 1160 \mathrm{~m}, 964 \mathrm{w} \mathrm{cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz): $\delta 2.57(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.40 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.83$ (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta 211.0,188.2,96.1,85.3,45.3,36.2,33.5,24.9,21.6 \mathrm{ppm} ; ~ L R M S ~(20$ eV): $m / z 152\left[\mathrm{M}^{+}, 4\right], 137$ (10), 109 (31), 95 (24); HRMS (EI): m / z calcd $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}\left[\mathrm{M}^{+}\right]: 152.0837$. Found: 152.837.

[^0]: ${ }^{1}$ P. Chiu, Z. Li and C. M. Fung, Tetrahedron Lett. 2003, 44, 455.

[^1]: ${ }^{2}$ For the series of compounds $\mathbf{3 a - c}, \mathbf{4 a}$, the ester $\mathrm{C}=\mathrm{O}$ stretch is at significantly lower frequencies $\left(<1723 \mathrm{~cm}^{-1}\right.$, with no change in frequency observed upon dilution), due to intramolecular hydrogen bonding in addition to angle deformation/steric strain for the ester at a quaternary or angular position
 ${ }^{3}$ For the series of compounds 3a-f, the enone $\mathrm{C}=\mathrm{O}$ stretch is at lower frequencies ($<1660 \mathrm{~cm}^{-1}$), due to intramolecular hydrogen bonding
 ${ }^{4}$ For compounds $\mathbf{4 a}, \mathbf{4 d}$ and $\mathbf{4 e}$, the ketone $\mathrm{C}=\mathrm{O}$ stretch is at lower frequencies $\left(<1708 \mathrm{~cm}^{-1}\right.$, with no change in frequency observed upon dilution) due to intramolecular hydrogen bonding

[^2]: ${ }^{5}$ In the IR spectrum of $\mathbf{4 a}$ ", the absorption at $1708 \mathrm{~cm}^{-1}$ is very broad and probably contains both the ester and ketone carbonyl absorptions whose frequencies are decreased by strong hydrogen bonding.

[^3]: ${ }^{6}$ C. P. Szeto, M. Phil. Dissertation, The University of Hong Kong, Hong Kong, 2000.

[^4]: ${ }^{7}$ P. Chiu, B. Chen and K. F. Cheng, Tetrahedron Lett. 1998, 39, 9229.
 ${ }^{8}$ B. Chen, Ph. D. Dissertation. The University of Hong Kong, Hong Kong, 2001.

[^5]: ${ }^{9}$ P. Chiu, C. P. Szeto, Z. Geng and K. F. Cheng, Org. Lett. 2001, 3, 1901.

[^6]: ${ }^{10}$ D. F. Cauble, J. D. Gipson and M. J. Krische, J. Am. Chem. Soc. 2003, 125, 1110.s

[^7]: ${ }^{11}$ The ketone $\mathrm{C}=\mathrm{O}$ stretch at significantly lower frequencies $\left(1693 \mathrm{~cm}^{-1}\right)$ with no change observed in frequency upon dilution, is due to intramolecular hydrogen bonding in addition to angle deformation/steric strain for the ketone at very hindered position.
 ${ }^{12}$ The conformations of the epoxide isomers were optimized computationally by DFT calculations using the B3LYP/6-31G(d) model. We thank Ms. Lihong Hu and Dr. G. H. Chen of the Department of Chemistry, The University of Hong Kong for doing the calculations.

[^8]: ${ }^{13}$ The ester $\mathrm{C}=\mathrm{O}$ stretch is at lower frequencies $\left(<1727 \mathrm{~cm}^{-1}\right)$ due to angle deformation/steric strain for the ester at a quaternary or angular position.

[^9]: ${ }^{14}$ B. C. Pan, H. Y. Chang, G. L. Cai and Y. S. Guo, Pure \& Appl. Chem. 1989, 61, 389.

[^10]: ${ }^{15}$ M. Takahashi, K. Dodo, Y. Hashimoto and R. Shirai Tetrahedron Lett. 2000, 41, 2111.
 ${ }^{16}$ T. C. McKenzie, Synthesis 1977, 9, 608

[^11]: ${ }^{17}$ G. Pandey, S. Hajra and M. K. Ghorai, J. Org. Chem. 1997, 62, 5966.
 ${ }^{18}$ F. Ameer, R. G. F. Giles, I. R. Green and K. S. Nagabhushana, Synth. Comm. 2002, 32, 369.

