Supporting Information

MS: "An enantioselective imprinted receptor for...." by Manesiotis et al.

Experimental Section

${ }^{1} H$ NMR titrations and estimation of association constant for (1) and TBABZ
All ${ }^{1} \mathrm{H}$ NMR titrations were performed in DMSO- d_{6}. Association constants $\left(\mathrm{K}_{\mathrm{SL}}\right)$ for the interactions between hosts and guests were determined by titrating an increasing amount of guest (tetrabutylammonium benzoate, TBABz) into a constant amount of functional monomer (1). The concentration of functional monomer was 1 mM and the amounts of added guest were $0,0.5,1,2,3,4,5,7.5$ and 10 equivalents, respectively. The complexation induced shifts (Δ) of the host urea protons were followed and titration curves were then constructed of Δ versus guest concentration. The raw titration data were fitted to a $1: 1$ binding isotherm by nonlinear regression using Microcal ${ }^{\mathrm{TM}}$ Origin 5.0 from which the association constants could be calculated.

Polymer preparation

An imprinted polymer using monomer (1) (P1) was prepared in the following manner. The template molecule, Z-D-Glu-OH (1 mmol), if not otherwise stated, functional monomer (1) (2 mmol) and EDMA (20 mmol) were dissolved in DMF $(5.6 \mathrm{~mL})$. To the solution were added TEA (2 mmol) and the initiator ABDV ($1 \% \mathrm{w} / \mathrm{w}$ of total monomers). The solution was transferred to a glass ampoule, cooled to $0^{\circ} \mathrm{C}$ and purged with a flow of dry nitrogen for 10 minutes. The tubes were then flame-sealed while still under cooling and the polymerization initiated by placing the tubes in a thermostatted water bath pre-set at $40^{\circ} \mathrm{C}$. After 24 h the tubes were broken and the polymers lightly crushed. Removal of the template molecule from the polymers was achieved by extraction with methanol in a Soxhlet apparatus for 24 hours. Thereafter, the polymers were crushed and sieved to obtain particles in the size range $25-50 \mathrm{~m}$. A non-imprinted polymer $\left(\mathrm{P}_{\mathrm{N}} 1\right)$ was prepared in the same way as described above, but with the omission of the template molecule and TEA from the pre-polymerisation solution.

Elemental analyses of extracted polymers: $\mathrm{P} 1 / \mathrm{P}_{\mathrm{N}} 1$: Calculated: C 60.97 ; H 6.81; N 1.86. Found: P1: C 60.0; H 7.0; N 1.7. $\mathrm{P}_{\mathrm{N}} 1$: C 59.9; H 7.1; N 1.6

HPLC Evaluation

The $25-50 \mu \mathrm{~m}$ particle size fraction was repeatedly sedimented (80/20: methanol /water) to remove fine particles and then slurry-packed into HPLC columns (125 mm x 5 mm , i.d.) using the same solvent mixture as pushing solvent. Subsequent analyses of the polymers were performed using an Agilent HP1050 system equipped with a diode array-UV detector and a workstation. Analyte detection was performed at 260 nm .

Binding isotherms

Imprinted or non-imprinted polymer (10 mg of $25-50 \mu \mathrm{~m}$ particles) were weighed into 2 mL HPLC vials. Solutions (1 mL) of Z-D-Glu-OH and Z-L-Glu-OH in a mixture of acetonitrile (92%) - water (7\%) - TEA (1\%) made up to the following concentrations: $0,0.1,0.2,0.5,0.75,1,2,5,10 \mathrm{mM}$, were then added. After 24 h incubation, the concentration of the non-bound analyte in each vial was quantified by HPLC, using a C-18 reversed phase column (Phenomenex Luna ($5 \mu \mathrm{~m}$), $150 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) and calibration using the method of external standards. The mobile phase consisted of methanol (40\%) - $\mathrm{H}_{2} \mathrm{O}$ (59.4\%) - Trifluoroacetic acid (0.6\%). Each experiment was performed in duplicate.

Supplementary Material for Chemical Society Reviews This journal is © The Royal Society of Chemistry 2004

Figure 1. Job Plot for the 1,3-diarylsubstituted urea monomer (1) with TBA benzoate in DMSO- d_{6}. Mother solution concentrations of both host and guest were 2 mM .

Figure 2. ${ }^{1} \mathrm{H}$ NMR titration curves reflecting the complexation of TBA benzoate by urea monomer (1) in DMSO- $\mathrm{d}_{6}([1]=5 \mathrm{mM}$, [TBA benzoate] $=0-50 \mathrm{mM}$). $\mathrm{C}_{\mathrm{f}}=$ concentration of free guest. CIS $=$ complexation induced shift of one of the urea protons.

