Supplementary material for the determination of $\% \mathrm{GC}$ yield:

Firstly response factor needs to be determined.
Let the response factor be F for the olefins with respect to internal standard.
Now, area of olefin signal / moles of olefin $=\mathrm{F} \times$ area of standard signal $/ \mathrm{moles}$ of standard.
That is, $\mathrm{a}_{\mathrm{o}} / \mathrm{m}_{\mathrm{o}}=\mathrm{F} \times \mathrm{a}_{\mathrm{s}} / \mathrm{m}_{\mathrm{s}}$.
Therefore, $\mathrm{F}=\mathrm{a}_{\mathrm{o}} \times \mathrm{m}_{\mathrm{s}} / \mathrm{a}_{\mathrm{s}} \times \mathrm{m}_{0}$. \qquad .(1) where m_{o} and m_{s} are the moles of olefin and that of standard respectively. a_{o} and a_{s} are the area of olefin and that of standard respectively at zero time of the mixing.
This equation presumes a linear response of the detector to both olefin and the standard.
Constancy of F has been checked by varying randomly the moles of olefins and recording the chromatogram at zero time.
Similarly, a known quantity of epoxide is mixed with the same quantity of the standard as in equation (1) and is chromatographed to find the response factor of this system.
Therefore, $\mathrm{F}^{\prime}=\mathrm{a}_{\mathrm{e}} \times \mathrm{m}_{\mathrm{s}} / \mathrm{a}_{\mathrm{s}}{ }^{\prime} \times \mathrm{m}_{\mathrm{e}} \ldots \ldots \ldots \ldots .$. (2) where a_{e} and $\mathrm{a}_{\mathrm{s}}{ }^{\prime}$ are the area of epoxide and standard, and m_{e} and m_{s} are the moles of epoxide and standard, respectively. The F^{\prime} $=$ response factor for the epoxides with respect to standard.
Constancy of F^{\prime} has been checked by varying randomly the moles of olefins. The constancy of both F and F^{\prime} having been checked, varying moles of standard randomly without changing the moles of olefin and epoxide respectively, it can be concluded that equation (1) and (2) should always be valid.

In case of olefin after reaction is over,

$$
\mathrm{a}_{\mathrm{o}^{\prime}}^{\prime} / \mathrm{m}_{\mathrm{o}}^{\prime}=\mathrm{F} \times \mathrm{a}_{\mathrm{s}}{ }^{\prime \prime} / \mathrm{m}_{\mathrm{s}}^{\prime}
$$

Therefore, $\mathrm{m}_{\mathrm{o}}{ }^{\prime}=\mathrm{a}_{\mathrm{o}}{ }^{\prime} \times \mathrm{m}_{\mathrm{s}}{ }^{\prime} / \mathrm{a}_{\mathrm{s}}{ }^{\prime \prime} \times \mathrm{F} \ldots \ldots \ldots \ldots$. (3), where $\mathrm{a}_{\mathrm{o}}{ }^{\prime}$ and $\mathrm{a}_{\mathrm{s}}{ }^{\prime \prime}$ are the area of olefin and standard respectively. $\mathrm{m}_{\mathrm{o}^{\prime}}$ is the unknown moles of olefin and $\mathrm{m}_{\mathrm{s}}{ }^{\prime}$ is the moles of standard.
From this equation $\mathrm{m}_{\mathrm{o}}{ }^{\prime}$ can be determined by applying known values of $\mathrm{a}_{\mathrm{o}}{ }^{\prime}, \mathrm{a}_{\mathrm{s}}{ }^{\prime \prime}$ and $\mathrm{m}_{\mathrm{s}}{ }^{\prime}$.
In the case of epoxide after the reaction is over,

$$
\mathrm{a}_{\mathrm{e}}{ }^{\prime \prime} / \mathrm{m}_{\mathrm{e}}^{\prime \prime}=\mathrm{F}^{\prime} \times \mathrm{a}_{\mathrm{s}}^{\prime \prime \prime} / \mathrm{m}_{\mathrm{s}}^{\prime \prime}
$$

Therefore, $\mathrm{m}_{\mathrm{e}}{ }^{\prime \prime}=\mathrm{a}_{\mathrm{e}}{ }^{\prime \prime} \times \mathrm{m}_{\mathrm{s}}{ }^{\prime \prime} / \mathrm{a}_{\mathrm{s}}{ }^{\prime \prime \prime} \times \mathrm{F}^{\prime} \ldots \ldots \ldots .$. (4), where $\mathrm{a}_{\mathrm{e}}{ }^{\prime \prime}$ and $\mathrm{a}_{\mathrm{s}}{ }^{\prime \prime \prime}$ are the area of epoxide and standard respectively. $\mathrm{m}_{\mathrm{s}}{ }^{\prime \prime}$ is the moles of standard and $\mathrm{m}_{\mathrm{e}}{ }^{\prime \prime}$ is the unknown moles of epoxide.
Thus, from the equation (4) $\mathrm{m}_{\mathrm{e}}{ }^{\prime \prime}$ has been calculated as all other terms are known.
Therefore, \% GC yield= [moles of epoxide $\left(\mathrm{m}_{\mathrm{e}}{ }^{\prime \prime}\right) /$ \{moles of olefin $\left(\mathrm{m}_{\mathrm{o}}{ }^{\prime}\right)+$ moles of epoxide $\left.\left.\left(\mathrm{m}_{\mathrm{e}}{ }^{\prime \prime}\right)\right\}\right] \times 100$.

