This journal is © The Royal Society of Chemistry 2004

A New Synthetic Entry to Phosphinophosphinidene Complexes. Synthesis and Structural Characterisation of the First Side-on Bonded and the First Terminally Bonded Phosphinophosphinidene Zirconium Complexes [μ-(1,2:2-η-^tBu₂P=P){Zr(Cl)Cp₂}] and [{Zr(PPhMe₂)Cp₂}(η¹-P-P^tBu₂)]

Jerzy Pikies^{b*}, Elke Baum^a, Eberhard Matern^a, Jarosław Chojnacki, Rafał Grubba^b, Andrzej Robaszkiewicz^b.

^a Institut für Anorganische Chemie der Universität (TH), Engesserstr. 15 Geb.Nr. 30.45. D-76128 Karlsruhe.

^b Chemical Faculty, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland

^{*} Fax: +48 58 3472694; Tel: +48 58 3472622; E-mail: pikies@chem.pg.gda.pl

Electronic Supplementary Information

Experimental

All manipulations were performed in flame-dried Schlenk type glassware on a vacuum line. THF and toluene were dried over Na/benzophenone and distilled under nitrogen. Pentane was dried over Na/benzophenone/diglyme and distilled under nitrogen. ³¹P NMR spectra were recorded on Bruker AC250 and AMX300 spectrometers (external standard 85% H₃PO₄).

^tBu₂P–P(SiMe₃)Li²THF was prepared according to literature procedures [G. Fritz, T. Vaahs, J. Härer, *Z. Anorg. Allg. Chem.*, 1987, **552**, 11].

Synthesis of $[\mu - (1,2:2-\eta - {}^{t}Bu_{2}P - P){Zr(Cl)cp_{2}}]$ (1).

 $2 \left[Cp_2 ZrCl_2 \right] + 2 {}^{t}Bu_2 P - P(SiMe_3)Li \rightarrow {}^{t}Bu_2 P - P(SiMe_3)_2 + 2 LiCl + \left[\mu - (1,2:2-\eta - {}^{t}Bu_2 P = P) \{ Zr(Cl)Cp_2 \}_2 \right] (1)$

A solution of 0.090 g (0.225 mmol) ^tBu₂P–P(SiMe₃)Li 2THF in 3 ml THF was slowly added at room temperature to a solution of 0.055 g (0.19 mmol) Cp₂ZrCl₂ in 2 ml THF. The mixture immediately turned brown, was stirred for 1 h and then evacuated at 2 10⁻³ Torr for 3 h. The residue was dissolved in about 5 ml THF, filtered and investigated by ³¹P{¹H} NMR. Then the volume was reduced to about 1 ml and the concentrate stored for 3 days at 4° C. About 0.021 g of dark red crystals of 1 precipitated (32%). ³¹P NMR of 1 (THF, C₆D₆, 20° C) δ = P1 93.9 ppm, d, no P-H coupling; P2 -1.2 ppm, d of m, small ³J(P-H) coupling, ¹J(P-P) = -520.6 Hz.

¹H NMR of **1** δ = 1.543 d, ³J(P-H) = 13.8 Hz, (CH₃)₃C, (from ¹H-³¹P-COSY experiment).

This journal is © The Royal Society of Chemistry 2004

EI MS (EI = 70 eV, QT = 180° C, DI = 200° C, Mass Spectrometer MAT8200) : m/z 626.9 (C₂₃H₃₆Cl₂P₂Zr₂, 0.5%), 592.9(0.5%), 515(1%), 488.9 (C₁₈H₃₁P₂Zr₂, 2%), 462.8(8%), 341.9 (C₁₄H₂₂P₂Zr, 12%), 293.9 (100%).

Elemental analysis: C 46.8 %, H 5.68 %, C₂₈H₃₈Cl₂P₂Zr₂ calc. C 48.74%, H 5.55 %.

<u>The ${}^{31}P{}^{1}H$ NMR study upon the reaction mixture from the synthesis of 1.</u>

1) $\delta = P1 93.9 \text{ ppm (d)}, P2 - 1.2 \text{ ppm (d)}, {}^{1}J(P-P) = -520.6 \text{ Hz}, [\mu - (1,2:2-\eta - {}^{t}Bu_2P2 = P1) \{Zr(Cl)Cp_2\}_2]$ (1).

a) δ = P1 44.6 ppm (d), P2 -200.7 ppm (d), ¹J(P-P) = -399.6 Hz, ^tBu₂P1-P2(SiMe₃)₂.

b) $\delta(P)$ 21.0 (s), ^tBu₂PH formed *via* splitting of the P-P bond in the ^tBu₂P–P group.

c) $\delta = P1 470.5 \text{ ppm (d)}, P2 72.2 \text{ ppm (d)}, {}^{1}J(P-P) = -331.9 \text{ Hz}.$

d) δ = P1 67.3 ppm (d), P2 -9.1 ppm (d), ¹J(P-P) = -521.6 Hz, probably [(1,2- η -^tBu₂P1=P2-

SiMe₃){Zr(Cl)Cp₂}]. A ³¹P NMR experiment established no direct ¹J(P-H) coupling, a small

³J(P-H) coupling of P1 and a very small ³J(P-H) coupling at P2, very good soluble in pentane (dark red solution).

e) $\delta = P1 \ 19.1 \ ppm$ (d), P2 -197.6 ppm (d), ${}^{1}J(P-P) = -189.5 \ Hz$, ${}^{1}J(P-H) = 189.2 \ Hz \ {}^{t}Bu_{2}P1 - P2(SiMe_{3})H$.

f) δ = P1 54.1 ppm (d), P2 -98.6 ppm (d,d), P3 -178.9 ppm (d,d), ¹J(P1-P2) = -316.6 Hz, ¹J(P2-P3) = -270.1 Hz, ¹J(P1-P3) = 42.0 Hz.

The stability of solutions of **1** in THF is limited. **1** precipitates from the THF reaction mixture, however an attempt to crystallise **1** from a solution in THF resulted in the formation of a significant amount of decomposition products.

Synthesis of [${Zr(PPhMe_2)Cp_2}(\eta-P-P^tBu_2)$] (2).

 $[Cp_2ZrCl_2] + 2 {}^{t}Bu_2P - P(SiMe_3)Li + PPhMe_2 \rightarrow {}^{t}Bu_2P - P(SiMe_3)_2 + [\{Zr(PPhMe_2)Cp_2\}(\eta - P - P^{t}Bu_2)](\mathbf{2}) + 2 LiCl_2] + 2 LiCl_2] + 2 LiCl_2 + 2 LiCl_2$

A solution of 0.411 g (1.03 mmol) ${}^{t}Bu_2-P(SiMe_3)Li\cdot 2THF$ in 2 ml DME was added to 0.7 ml (5.07 mmol) PhPMe₂ and 0.156 g (0.53 mmol) [Cp₂ZrCl₂] in 2 ml DME at about -35 °C. A dark red solution formed immediately. After stirring for 1 h, the reaction mixture was studied with ${}^{31}P{1H}$ NMR, than the solvent was evaporated, the residue dissolved in 8 ml pentane, filtered, and the brown solution concentrated to about 4 ml. While standing for 5 days, the color of the solution turned to dark green and

This journal is © The Royal Society of Chemistry 2004

finally to dark blue, and dark blue crystals of **2** (shaped like blocks) precipitated (0.12 g, 44% yield). An attempt to dissolve **2** in THF-d₈ led to a partial decomposition of this compound.

 ${}^{31}P{}^{1}H} NMR of [{Zr(P3PhMe_2)Cp_2}(\eta-P1-P2^{t}Bu_2)] (2); \delta(P1) 728.2 (d,d), \delta(P2) 64.6 (d), \delta(P3) 6.5 (d), \delta(P3) 6$

(d), ${}^{1}J(P1-P2) = -283.7 \text{ Hz}$, ${}^{2}J(P1-P3) = 15.3 \text{ Hz}$.

Anal. Calc. C 58.29%; H 7.35%. Found C 58.9%; H 7.7%.

The ³¹P{¹H} NMR study upon the reaction mixture from the synthesis of **2**. **2**) $\delta(P1)$ 728.2 (d,d), $\delta(P2)$ 64.6 (d), $\delta(P3)$ 6.5 (d), ¹J(P1-P2) -283.7 Hz, ²J(P1-P3) 15.3 Hz; [{Zr(P3PhMe₂)Cp₂}(η-P1-P2^tBu₂)] (**2**) **a**) $\delta = P1$ 44.3 ppm (d), P2 -200.6 ppm (d), ¹J(P-P) = -400.5 Hz, ^tBu₂P1-P2(SiMe₃)₂. **b**) $\delta(P)$ 21.0 (s), ^tBu₂PH. **c**) $\delta(P1)$ 468.7 (d), $\delta(P2)$ 72.8 (d), ¹J(P-P) = -331.9 Hz. **g**) $\delta(P1)$ 47.6 (d), $\delta(P2)$ -242.3 ppm (d), ¹J(P-P) = -274.7 Hz; ^tBu₂P1-P2(SiMe₃)Li (substract). **h**) $\delta(P1)$ 560.4 (d), $\delta(P2)$ 53.7 (d), ¹J(P-P) = -339.5 Hz. **i**) $\delta(P1)$ 55.7 (d), $\delta(P2)$ -123.9 (d,d), $\delta(P3)$ -197.6 (d,d), ¹J(P1-P2) = -316.6 Hz, ¹J(P2-P3) = -297.5 Hz, ¹J(P1-P3) = 28.3 Hz. No ¹J(P-H) coupling was observed. This data set is similar to **f** (synthesis of **1**).

Although solutions of **2** in DME are indefinitely stable in the presence of an excess of PPhMe₂ at ambient temperature, an attempt to dissolve **2** in THF-d₈ resulted in a decomposition of a part of the compound and formation of a significant amount of free PPhMe₂ together with a small amount of ^tBu₂PH. It's a noteworthy property of **2** how easily it looses the tertiary phosphane ligand and undergoes

further decompositions.

Crystal data of 1: C₂₈H₃₈Cl₂P₂Zr₂; T = 170(2) K; wavelength 71.073 pm (Mo K α); monoclinic, *P*2₁/n (No. 14), a =1074.89(4) pm, b = 2394.32(10) pm, c = 1155.29(5) pm, β = 102.026(3) °; Z = 4; absorption coefficient 1.026 mm⁻¹; crystal size 0.4x 0.35x0.15 mm³; θ range for data collection 1.70 - 25.50 °, reflections collected = 15035, unique reflections = 5063; completeness (to θ = 25.50 °) = 93.8%; data = 4713, restraints = 0, parameters = 313; final R indices [I>2 σ (I)] R1 = 0.0206, wR2 = 0.0530; R indices (all data) R1 = 0.0228, wR2 = 0.0539 (all data); H atoms refined as riding on the respective heavy atoms; diffractometer Stoe IPDS. **CCDC 225538**

Crystal data of 2: $C_{26}H_{39}P_3Zr$; T = 150(0.2) K; wavelength 71.073 pm (Mo K α); triclinic, P_1^- (No. 2), a = 931.2(2) pm, b = 1157.4(2) pm, c = 2522.0(5) pm, α = 78.91(3)°, β = 87.11(3)°; γ = 85.26(3)°, Z = 4; Two molecules present in the asymmetric unit, absorption coefficient 0.606 mm⁻¹; crystal size 0.5x 0.4x0.3 mm³; θ range for data collection 1.65 - 25.50°, reflections collected = 10154, unique reflections

This journal is © The Royal Society of Chemistry 2004

= 9876; completeness (to θ = 25.50 °) = 100.00%; data = 9876, restraints = 0, parameters = 526; final R indices [I>2 σ (I)] R1 = 0.1011, wR2 = 0.2533; R indices (all data) R1 = 0.1659, wR2 = 0.3115 (all data); all H atoms refined isotropically as riding on heavy atoms; diffractometer KUMA KM4. **CCDC 232586**

Table 1. Selected bond lengths [A] and angles [deg] for both molecules of 2.

first molecule:	
Zr(1)-P(1)	2.488(3)
Zr(1)-C(10)	2.491(13)
Zr(1)-C(6)	2.502(13)
Zr(1)-C(7)	2.503(13)
Zr(1) - C(8)	2.512(13)
Zr(1) - C(9)	2.514(14)
Zr(1) - C(5)	2524(12)
2r(1) - C(1)	2.521(12) 2.521(11)
21(1) - C(2)	$2 \cdot 52 \cdot (11)$
$\Delta \Gamma(1) = C(2)$ $\nabla r(1) = C(4)$	2.532(12)
$\Sigma_{1}(1) = C(4)$	2.550(15)
2r(1) - C(3)	2.548(13)
2r(1) - P(3)	2.734(3)
P(1)-P(2)	2.200(5)
P(2)-C(23)	1.909(12)
P(2)-C(19)	1.949(13)
P(3)-C(11)	1.822(12)
P(3)-C(13)	1.836(12)
P(3)-C(12)	1.836(12)
second molecule:	
Zr(2)-C(39)	2.478(14)
Zr(2)-P(4)	2.482(3)
Zr(2) - C(38)	2.500(14)
Zr(2) - C(35)	2.504(14)
Zr(2) - C(31)	2.509(14)
Zr(2) - C(37)	2508(13)
Zr(2) = C(37)	2.500(10) 2.521(14)
2r(2) = C(32)	2.521(1-) 2.528(12)
21(2) = C(30)	2.520(12)
$\Delta I(2) = C(34)$	2.555(15)
$Z\Gamma(2) = C(30)$	2.536(14)
2r(2) - C(33)	2.541(14)
2r(2) - P(6)	2.738(3)
P(4)-P(5)	2.215(5)
P(5)-C(52)	1.913(13)
P(5)-C(48)	1.931(12)
P(6)-C(47)	1.813(13)
P(6)-C(40)	1.827(13)
P(6)-C(46)	1.835(13)
first molecule:	
P(1)-Zr(1)-C(10)	141.7(4)
P(1)-Zr(1)-C(6)	115.4(4)
P(1) - Zr(1) - C(7)	87.7(3)
P(1) - Zr(1) - C(8)	91.1(3)
P(1) - Zr(1) - C(9)	122.6(3)
P(1) - Zr(1) - C(5)	77 - 9 (3)
P(1) - Zr(1) - C(1)	103 8(3)
P(1) - 7r(1) - C(2)	131 3(3)
P(1) = 7r(1) = C(1)	×3ו3(3) 86 3(3)
D(1) = 7r(1) = C(2)	117 6(1)
$F(T) = \Delta F(T) = C(S)$ $D(T) = D(T) = D(S)$	
$r(1) = \Delta r(1) = r(3)$	00.49(LU) 103 7(A)
C(10) - 2r(1) - P(3)	103./(4)
C(6) - Zr(1) - P(3)	131.9(3)

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2004

C(7)-Zr(1)-P(3)	118.4(3)
C(8)-Zr(1)-P(3)	86.0(3)
C(9)-Zr(1)-P(3)	77.7(3)
C(5)-Zr(1)-P(3)	114.3(3)
C(1)-Zr(1)-P(3)	132.9(3)
C(2)-Zr(1)-P(3)	108.8(3)
C(4)-Zr(1)-P(3)	83.4(3)
C(3)-Zr(1)-P(3)	80.4(3)
P(2)-P(1)-Zr(1)	115.53(16)
C(11)-P(3)-Zr(1)	115.7(4)
C(13)-P(3)-Zr(1)	118.0(4)
C(12)-P(3)-Zr(1)	115.8(4)
second molecule:	
C(39)-Zr(2)-P(4)	140.6(4)
P(4)-Zr(2)-C(38)	122.9(3)
P(4)-Zr(2)-C(35)	114.7(4)
P(4)-Zr(2)-C(31)	101.2(4)
P(4)-Zr(2)-C(37)	91.5(3)
P(4)-Zr(2)-C(32)	77.6(3)
P(4)-Zr(2)-C(36)	87.8(3)
P(4)-Zr(2)-C(34)	120.4(4)
P(4)-Zr(2)-C(30)	130.3(4)
P(4)-Zr(2)-C(33)	88.6(4)
C(39)-Zr(2)-P(6)	105.2(4)
P(4)-Zr(2)-P(6)	88.58(11)
C(38)-Zr(2)-P(6)	79.0(3)
C(35)-Zr(2)-P(6)	132.9(4)
C(31)-Zr(2)-P(6)	132.5(3)
C(37)-Zr(2)-P(6)	87.7(3)
C(32)-Zr(2)-P(6)	110.2(3)
C(36)-Zr(2)-P(6)	119.4(3)
C(34)-Zr(2)-P(6)	81.9(3)
C(30)-Zr(2)-P(6)	111.3(4)
C(33)-Zr(2)-P(6)	81.3(4)
P(5)-P(4)-Zr(2)	116.87(17)
C(47)-P(6)-Zr(2)	116.1(5)
C(40)-P(6)-Zr(2)	118.5(4)
C(46)-P(6)-Zr(2)	115.7(4)