Material for Electronic Supplementary Information (ESI)
 Amine Olefin Rhodium(I) Complexes: $\mathbf{p} \mathbf{K}_{\mathrm{a}}$ and NH Bond Strength

Torsten Büttner, Frank Breher, and Hansjörg Grützmacher*
${ }^{a}$ Department of Chemistry and Applied Biosciences, ETH Hönggerberg HCI, 8093 Zürich, Switzerland. Fax: +41(0)1 633 1032; Tel: +41-(0)1 632 2855; E-mail: gruetzmacher@inorg.chem.ethz.ch

A) Experimental details, NMR data, IR (RAMAN), UV/vis, mass spectra, and elemental analyses of compounds 2, 5, and 6:
$\operatorname{trop}_{2} \mathbf{N H}(2)$
MF: $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}$

MW: $397.51 \mathrm{~g} / \mathrm{mol}$

3 g tropCl $1(13.2 \mathrm{mmol})$ are dissolved in 60 ml toluene and $1 \mathrm{ml}(1.41 \mathrm{~g} ; 8.7 \mathrm{mmol} ; 30 \%$ excess $)$ of 1,1,1,3,3,3-hexamethyl-disilazane is added. The mixture is refluxed for 4 h . Subsequently, all volatile components are evaporated. For the following procedures, working under argon is no longer necessary. 30 ml of n -hexane are added and the suspension heated until a white powder was obtained.
Yield: 95\%
Analytical data was in agreement with the values reported in the literature. ${ }^{[5]}$

$\left.\left[\mathrm{Rh}\left(\operatorname{trop}_{2} \mathrm{NH}\right)(\operatorname{tropNH})_{2}\right)\right] \mathrm{O}_{3} \mathrm{SCF}_{3}$ (5)

MF: $\mathrm{C}_{46} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{RhS}$
MW: $856.76 \mathrm{~g} / \mathrm{mol}$
MP: $>250^{\circ} \mathrm{C}$

For the preparation of $5,256 \mathrm{mg}\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{O}_{3} \mathrm{SCF}_{3}(4)(0.55 \mathrm{mmol})$ and 217 mg trop ${ }_{2} \mathrm{NH} 2$ are suspended in $25 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$ and heated for 20 min . to $50^{\circ} \mathrm{C}$ whereby a yellow solution is obtained. All volatile products are evaporated under vaccum, the residue dissolved in $25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 115 mg trop $\mathrm{NH}_{2}(3)$ are added. After refluxing the solution for 10 min ., $50 \mathrm{ml} n$-hexane were added to precipitate the yellow product complex in almost quantitative yield. Crystals were grown from $\mathrm{CH}_{3} \mathrm{CN} /$ toluene/n-hexane.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400.1 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=2.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 4.26\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{RhH}}=0.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{H}^{12}\right), 4.67\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 4.92\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 5.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.6,{ }^{2} \mathrm{~J}_{\mathrm{RhH}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{11}\right), 6.86\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}^{2} / \mathrm{H}^{3} / \mathrm{H}^{4} / \mathrm{H}^{9}\right), 6.97\left(\mathrm{~m}, 2 \mathrm{H}^{13}\right)$, $7.07\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 7.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{6} / \mathrm{H}^{7}\right), 7.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{8}\right), 7.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}^{14} / \mathrm{H}^{15} / \mathrm{H}^{16}\right)$
${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta=60.9\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}^{17}\right), 70.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{5}\right), 74.3\left(\mathrm{~d},{ }^{1} J_{R h C}=8.6 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{11}\right), 79.1\left(\mathrm{~d},{ }^{1} J_{R h C}=7.4 \mathrm{~Hz}, 2 \mathrm{C}\right.$, $\left.\mathrm{C}^{10}\right), 89.4\left(\mathrm{~d},{ }^{1} J_{R h C}=5.5 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{12}\right), 127.3\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{3}\right), 128.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{7}\right), 128.1\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{14}\right), 128.2\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{8}\right), 128.6\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{6}\right)$, $128.7\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{15}\right), 129.1\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{16}\right), 129.5\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{2}\right), 129.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{1}\right), 130.2\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{9}\right), 130.2\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{4}\right), 131.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{13}\right)$, $134.1\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{11 \mathrm{a}}\right), 134.5\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{12 \mathrm{a}}\right), 135.4\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{4 \mathrm{a}}\right), 136.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{9 \mathrm{a}}\right), 137.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{16 \mathrm{a}}\right), 137.6\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{5 \mathrm{a}}\right)$
${ }^{19} \mathrm{~F}$ NMR (282.4 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=-79.8(\mathrm{~s})$
${ }^{103} \mathrm{Rh}$ NMR (12.7 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta=1599$ (s)
ATR IR - neat in $\mathrm{cm}^{-1}: 3157$ (br with shoulder; NH/ NH_{2} stretch); $3050-2860(\mathrm{CH}$ stretch); $1601(\mathrm{~s}) ; 1489(\mathrm{~s}) ; 1428(\mathrm{w}) ; 1252(\mathrm{~s}) ;$ 1225 (s); 1142 (s); 1029 (s); 941 (w); 875 (w); 741 (s); 635 (s); 594 (s)

Raman in $\mathrm{cm}^{-1}: 3048$ (s); 1600 (vs); 1578 (w); 1488 (s); 1477 (s); 1427 (s); 1313 (s); 1224 (w); 1199 (s); 1044 (s); 884 (w); 573 (s); 402 (s); 392 (s); 332 (s); 325 (s); 238 (s); 178 (s), 146 (s)

UV/vis in $\mathrm{CH}_{3} \mathrm{CN}-\lambda$ in nm (ε in $1 \mathrm{~mol}^{1} \mathrm{~cm}^{1}$): 207 (shoulder), 254 (38300), 289 (38900), 360 (shoulder)
ESI MS of $\mathrm{M}^{+} \mathrm{OTf}$ in $\mathrm{CH}_{3} \mathrm{CN} ; \mathrm{m} / \mathrm{z}$ (fragment, intensity in \%): $500\left(\mathrm{M}^{\mp}\right.$ tropNH, 5$) ; 541\left(\mathrm{M}^{\mp} \operatorname{tropNH}+\mathrm{CH}_{3} \mathrm{CN}, 8\right) ; 707\left(\mathrm{M}^{+}, 100\right)$
Elemental analysis: found in \% (calc. in \%): C 64.36 (64.49); H 4.43 (4.24); N 3.27 (3.27); S 3.54 (3.74); F 6.52 (6.65)
$\left[\mathrm{Rh}\left(\operatorname{trop}_{2} \mathrm{~N}\right)\left(\operatorname{tropNH}_{2}\right)\right](6)$

MF: $\mathrm{C}_{45} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{Rh}$
MW: $706.68 \mathrm{~g} / \mathrm{mol}$

The amide complex 6 was prepared in small quantities. To a solution of 5 mg of 5 in 0.5 ml thf $\left[\mathrm{d}_{8}\right]$ in an NMR tube, 1 mg of KOtBu was added and the colour of the solution changed immediately from yellow to orange. Crystals of the product were obtained upon slow diffusion of $2 \mathrm{ml} n$-hexane into the reaction mixture.

In situ deprotonation of 5 in $\mathrm{DMSO}\left[\mathrm{d}_{6}\right]$ gave the $\mathrm{p} K_{\mathrm{a}}$ value of the secondary amine function $\left(\mathrm{p} K_{\mathrm{a}}=20.6\right)$ using indole as reference acid.
${ }^{1} \mathrm{H}$ NMR $\left(400.1 \mathrm{MHz}\right.$, DMSO-d6) $\delta=2.42\left(\mathrm{~s}\right.$ will be exchanged with time, $2 \mathrm{H}, \mathrm{NH}$) , $3.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 3.56(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}^{12}\right), 3.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{5}\right), 4.74\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 5.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{11}\right), 6.48-7.32\left(\mathrm{H}_{\mathrm{ar}}\right)$
${ }^{1} \mathrm{H}$ NMR (700.1 MHz, THF-d8) $\delta=3.27\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{10}\right), 3.75\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}^{5} / \mathrm{H}^{12}\right), 4.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{17}\right), 4.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.6 \mathrm{~Hz}, 2\right.$ $\left.\mathrm{H}, \mathrm{H}^{11}\right), 6.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{2}\right), 6.52\left(\mathrm{~d}^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{4}\right), 6.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 6.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{9}\right), 6.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{1}\right), 6.78$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{13}\right), 7.01\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{7} / \mathrm{H}^{8}\right), 7.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 7.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{15}\right), 7.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{16}\right), 7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{14}\right)$, the resonance of the NH_{2} protons was not detected, probably due to rapid exchange of these protons with the OH protons of the tert.butanol formed in the reaction.
${ }^{13} \mathrm{C}$ NMR ($\left.176.1 \mathrm{MHz}, \mathrm{THF}-\mathrm{d} 8\right) \delta=62.8\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{C}^{17}\right), 71.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{RhC}}=9.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{11}\right), 77.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{RhC}}=7.2 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{10}\right), 78.8(\mathrm{~s}, 2 \mathrm{C}$, $\left.\mathrm{C}^{5}\right), 91.6\left(\mathrm{~d},^{1} \mathrm{~J}_{\mathrm{RhC}}=5.4 \mathrm{~Hz}, 2 \mathrm{C}, \mathrm{C}^{12}\right), 124.4\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{8}\right), 125.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{3}\right), 126.2\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{C}^{3} / \mathrm{C}^{7}\right), 126.5\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{15}\right), 126.6\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{6}\right)$, $126.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{14}\right), 127.7\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{16}\right), 128.4\left(\mathrm{~s}, 4 \mathrm{C}, \mathrm{C}^{1} / \mathrm{C}^{2}\right), 129.0\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{9}\right), 131.2\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{13}\right), 134.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{11 \mathrm{a}}\right), 137.2(\mathrm{~s}, 2 \mathrm{C}$, $\mathrm{C}^{9 \mathrm{a}}$), $137.3\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{12 \mathrm{a}}\right), 137.8\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{16 \mathrm{a}}\right), 145.1\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{4 \mathrm{a}}\right), 145.5\left(\mathrm{~s}, 2 \mathrm{C}, \mathrm{C}^{5 \mathrm{a}}\right)$
${ }^{103} \mathrm{Rh}$ NMR (22.2 MHz, THF-d8): $\delta=1053$ (s)
ATR IR - neat in $\mathrm{cm}^{-1}: 3266\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ stretch); 3225 ($\mathrm{s}, \mathrm{NH}_{2}$ stretch); 3010 (m, CH stretch); 2831 (m, CH stretch); 1597 (m); 1575 (m); 1476 (s); 1230 (vs); 1135 (vs); 981 (s); 732 (s)

B) Determination of bond dissociation energies (BDE's) using electrode potentials and thermodyanamic cycles ${ }^{\text {S1-S3 }}$.

Bond dissociation energies (BDE's) can be obtained by combining the equilibrium acidity constants, $\mathrm{p} K_{\mathrm{a}}$, of weak acids $[\mathrm{BH}]^{+}$with the oxidation potentials of their conjugate bases, B , both measured in the same solvent (dmso or acetonitrile are commonly used). This method is based on the thermodynamic cycle shown in Scheme S 1 for a compound $[\mathrm{BH}]^{+}$:

Scheme S1. Thermodynamic cycle used to estimate the B-H bond dissociation energy of $[\mathrm{BH}]^{+}$in solution

The bond dissociation Gibbs energy $\Delta \mathrm{G}^{\circ}{ }_{\text {BDE }}\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]$ is given by:
$\Delta \mathrm{G}^{\circ}{ }_{\text {BDE }}=2.303 \mathrm{RT} \mathrm{p} K_{\mathrm{a}}-\mathrm{FE}_{\mathrm{red}}^{\circ}\left(\mathrm{H}^{+}\right)+\mathrm{FE}^{\circ}{ }_{\mathrm{ox}}(\mathrm{B})$
$\Delta \mathrm{G}^{\circ}{ }_{\text {BDE }}$ is related to gas phase bond dissociation energies BDE's which were quantitatively determined by various methods and are generally considered to be quite accurate:
$\Delta \mathrm{G}^{\circ}{ }_{\text {BDE }} \approx \operatorname{BDE}+\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}^{*}\right)-\mathrm{TS}_{\text {red }}^{\circ}\left(\mathrm{H}^{*}\right)_{\mathrm{g}}$
This equation is based on the assumption that the difference in the solvation energies and entropies of $[\mathrm{BH}]^{+}$and $[\mathrm{BH}]^{+}$is negligible. The magnitude of $\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}^{\bullet}\right)$ has been estimated in various solvents and S° red $\left(\mathrm{H}^{\bullet}\right)_{\mathrm{g}}$ is equal to $114.6 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} . \mathrm{E}^{\circ}{ }_{\mathrm{red}}\left(\mathrm{H}^{+}\right)$has also been determined for various solvents.

Bordwell derived the following equation (1) which allows a quite accurate estimation of BDE's from measurements in solution and that allows comparisons to be made between compounds belonging to different compound families and with gas-phase values.
(1) $\mathrm{BDE}=5.73 \mathrm{p} K_{\mathrm{a}}+96.5 \mathrm{E}_{\mathrm{fc} / \mathrm{fc}+}^{\circ}+C$

Here the term $5.7 \mathrm{p} K_{\mathrm{a}}$ is the equilibrium acidity constant of the weak acid expressed in $\mathrm{kJ} \mathrm{mol}^{-1}$. The term $96.5 \mathrm{E}_{\mathrm{ff} / \mathrm{fc}+}$ is the oxidation potential of the conjugate base of the weak acid expressed in $\mathrm{kJ} \mathrm{mol}^{-1}$ and referenced against the ferrocene/ferrocenium couple, $\mathrm{Fc} / \mathrm{Fc}^{+}$. The constant C is empirically derived for a given solvent by comparing the solution BDE's with accurate gas phase data and contains the above mentioned values for $\Delta \mathrm{G}_{\text {solv }}\left(\mathrm{H}^{\bullet}\right), \mathrm{S}_{\mathrm{red}}^{\circ}\left(\mathrm{H}^{\bullet}\right)_{\mathrm{g}}$, and $\mathrm{E}_{\mathrm{red}}^{\circ}\left(\mathrm{H}^{+}\right)$. Values of $C=306.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $248.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ are given for dmso or acetonitrile, respectively ${ }^{\mathrm{S} 3 \mathrm{a}}$. For a number of compound families (hydrocarbons, RH , amines, RNH_{2} and $\mathrm{R}_{2} \mathrm{NH}$, and alcohols, ROH) the BDE's were thus determined and solution and gas phase BDE's coincide mostly within $\pm 4 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

References:

S1 For a review on the estimation of bond energies in solution using electrode potentials and thermochemical cycles see: D.M. Wayner, V.D. Parker, Acc. Chem. Res. 1993, 26, 287 - 294.
S2 For BDE's see: D. F.McMillen, D. M.Golden, Ann. Rev. Phys. Chem. 1982, 33, 493-532 and references cited therein.
S3 For N-H BDE's in amines see: a) W.-Z. Liu, F.G. Bordwell, J. Org. Chem., 1996, 61, 4778 and references therein; b) F. G. Bordwell, J.-P. Cheng, G.-Z. Ji, A. V. Satish, X. Zhang, J. Am. Chem. Soc. 1991, 113, 9790 . Bordwell gives the equation $\mathrm{BDE}=1.37 \mathrm{p}_{\mathrm{a}}+23.1 \mathrm{E}_{\mathrm{fc} \text { fict }}+C$ expressing the data in kcal mol ${ }^{-1}$ with $\mathrm{C}=73.3 \mathrm{kcal} \mathrm{mol}^{-1}$ or $59.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for dmso or acetonitrile, respectively.

