Material for Electronic Supplementary Information (ESI)

Amine Olefin Rhodium(I) Complexes: pK_a and NH Bond Strength

Torsten Büttner, Frank Breher, and Hansjörg Grützmacher*

^a Department of Chemistry and Applied Biosciences, ETH Hönggerberg HCI, 8093 Zürich, Switzerland. Fax: +41-(0)1 633 1032; Tel: +41-(0)1 632 2855; E-mail: gruetzmacher@inorg.chem.ethz.ch

A) Experimental details, NMR data, IR (RAMAN), UV/vis, mass spectra, and elemental analyses of compounds 2, 5, and 6:

3 g tropCl 1 (13.2 mmol) are dissolved in 60 ml toluene and 1 ml (1.41 g; 8.7 mmol; 30% excess) of 1,1,1,3,3,3-hexamethyl-disilazane is added. The mixture is refluxed for 4 h. Subsequently, all volatile components are evaporated. For the following procedures, working under argon is no longer necessary. 30 ml of n-hexane are added and the suspension heated until a white powder was obtained. Yield: 95%

Analytical data was in agreement with the values reported in the literature.^[5]

[Rh(trop₂NH)(tropNH₂)]O₃SCF₃ (5)

 $MF \colon C_{46}H_{36}F_3N_2O_3RhS$

MW: 856.76 g/mol

MP: > 250°C

For the preparation of **5**, 256 mg [Rh(cod)₂]O₃SCF₃ (**4**) (0.55 mmol) and 217 mg trop₂NH **2** are suspended in 25 ml CH₃CN and heated for 20 min. to 50 °C whereby a yellow solution is obtained. All volatile products are evaporated under vaccum, the residue dissolved in 25 mL CH₂Cl₂ and 115 mg tropNH₂ (**3**) are added. After refluxing the solution for 10 min., 50 ml *n*-hexane were added to precipitate the yellow product complex in almost quantitative yield. Crystals were grown from CH₃CN/toluene/n-hexane.

 ${}^{1}\text{H NMR (400.1 MHz, CD_{3}\text{CN}) \delta = 2.16 (s, 2 \text{ H, NH}_{2}), 3.45 (s, 1 \text{ H, NH}), 3.66 (d, {}^{3}J_{\text{HH}} = 9.6 \text{ Hz}, 2 \text{ H}, \text{H}^{10}), 4.26 (d, {}^{2}J_{\text{RhH}} = 0.8 \text{ Hz}, 2 \text{ H}, \text{H}^{12}), 4.67 (s, 2 \text{ H}, \text{H}^{5}), 4.92 (s, 1 \text{ H}, \text{H}^{17}), 5.49 (dd, {}^{3}J_{\text{HH}} = 9.6, {}^{2}J_{\text{RhH}} = 1.3 \text{ Hz}, 2 \text{ H}, \text{H}^{11}), 6.86 (m, 8 \text{ H}, \text{H}^{2}/\text{H}^{3}/\text{H}^{4}/\text{H}^{9}), 6.97 (m, 2 \text{ H}^{13}), 7.07 (d, J = 7.4 \text{ Hz}, 2 \text{ H}, \text{H}^{1}), 7.28 (m, 4 \text{ H}, \text{H}^{6}/\text{H}^{7}), 7.31 (m, 2 \text{ H}, \text{H}^{8}), 7.42 (m, 6 \text{ H}, \text{H}^{14}/\text{H}^{15}/\text{H}^{16})$

¹³C NMR (100.6 MHz, CD₃CN) δ = 60.9 (s, 1 C, C¹⁷), 70.8 (s, 2 C, C⁵), 74.3 (d, ¹J_{*RhC*} = 8.6 Hz, 2 C, C¹¹), 79.1 (d, ¹J_{*RhC*} = 7.4 Hz, 2 C, C¹⁰), 89.4 (d, ¹J_{*RhC*} = 5.5 Hz, 2 C, C¹²), 127.3 (s, 2 C, C³), 128.0 (s, 2 C, C⁷), 128.1 (s, 2 C, C¹⁴), 128.2 (s, 2 C, C⁸), 128.6 (s, 2 C, C⁶), 128.7 (s, 2 C, C¹⁵), 129.1 (s, 2 C, C¹⁶), 129.5 (s, 2 C, C²), 129.8 (s, 2 C, C¹), 130.2 (s, 2 C, C⁹), 130.2 (s, 2 C, C⁴), 131.0 (s, 2 C, C¹³), 134.1 (s, 2 C, C^{11a}), 134.5 (s, 2 C, C^{12a}), 135.4 (s, 2 C, C^{4a}), 136.8 (s, 2 C, C^{9a}), 137.0 (s, 2 C, C^{16a}), 137.6 (s, 2 C, C^{5a})

¹⁹F NMR (282.4 MHz, CD₃CN): $\delta = -79.8$ (s)

¹⁰³Rh NMR (12.7 MHz, CD₃CN): δ = 1599 (s)

ATR IR – neat in cm⁻¹: 3157 (br with shoulder; NH/NH₂ stretch); 3050 - 2860 (CH stretch); 1601 (s); 1489 (s); 1428 (w); 1252 (s); 1225 (s); 1142 (s); 1029 (s); 941 (w); 875 (w); 741 (s); 635 (s); 594 (s)

Raman in cm⁻¹: 3048 (s); 1600 (vs); 1578 (w); 1488 (s); 1477 (s); 1427 (s); 1313 (s); 1224 (w); 1199 (s); 1044 (s); 884 (w); 573 (s); 402 (s); 392 (s); 332 (s); 325 (s); 238 (s); 178 (s), 146 (s)

UV/vis in CH₃CN - λ in nm (ε in 1 mol¹ cm¹): 207 (shoulder), 254 (38300), 289 (38900), 360 (shoulder)

ESI MS of M⁺OTf in CH₃CN; m/z (fragment, intensity in %): 500 (M^{\pm} tropNH₂, 5); 541 (M^{\pm} tropNH₂ + CH₃CN, 8); 707 (M⁺, 100)

Elemental analysis: found in % (calc. in %): C 64.36 (64.49); H 4.43 (4.24); N 3.27 (3.27); S 3.54 (3.74); F 6.52 (6.65)

$[\mathbf{Rh}(\mathbf{trop}_{2}\mathbf{N})(\mathbf{trop}\mathbf{NH}_{2})] (6)$ MF: C₄₅H₃₅N₂Rh MW: 706.68 g/mol $H_{2}N$ $H_{2}N$

The amide complex **6** was prepared in small quantities. To a solution of 5 mg of **5** in 0.5 ml thf[d_8] in an NMR tube, 1 mg of KOtBu was added and the colour of the solution changed immediately from yellow to orange. Crystals of the product were obtained upon slow diffusion of 2 ml *n*-hexane into the reaction mixture.

In situ deprotonation of **5** in DMSO[d₆] gave the pK_a value of the secondary amine function ($pK_a = 20.6$) using indole as reference acid.

¹H NMR (400.1 MHz, DMSO-d6) δ = 2.42 (s will be exchanged with time, 2H, NH₂), 3.33 (d, ³J_{HH} = 9.5 Hz, 2 H, H¹⁰), 3.56 (s, 2 H, H¹²), 3.70 (s, 2 H, H⁵), 4.74 (s, 1 H, H¹⁷), 5.01 (d, ³J_{HH} = 9.5 Hz, 2 H, H¹¹), 6.48 - 7.32 (H_{ar})

¹H NMR (700.1 MHz, THF-d8) $\delta = 3.27$ (d, ³J_{HH} = 9.6 Hz, 2 H, H¹⁰), 3.75 (s, 4 H, H⁵/H¹²), 4.81 (s, 1 H, H¹⁷), 4.89 (d, ³J_{HH} = 9.6 Hz, 2 H, H¹¹), 6.51 (m, 2 H, H²), 6.52 (d, ³J_{HH} = 7.4 Hz, 2 H, H⁴), 6.58 (m, 2 H, H³), 6.64 (m, 2 H, H⁹), 6.75 (d, ³J_{HH} = 7.4 Hz, 2 H, H¹), 6.78 (d, ³J_{HH} = 7.4 Hz, 2 H, H¹⁷), 7.01 (m, 4 H, H⁷/H⁸), 7.07 (m, 2 H, H⁶), 7.17 (m, 2 H, H¹⁵), 7.21 (m, 2 H, H¹⁶), 7.24 (m, 2 H, H¹⁴), the resonance of the NH₂ protons was not detected, probably due to rapid exchange of these protons with the OH protons of the *tert*-butanol formed in the reaction.

 $^{13}C \text{ NMR } (176.1 \text{ MHz}, \text{THF-d8}) \delta = 62.8 \text{ (s, 1 C, C}^{17}), 71.1 \text{ (d, }^{1}J_{RhC} = 9.2 \text{ Hz}, 2 \text{ C, C}^{11}), 77.7 \text{ (d, }^{1}J_{RhC} = 7.2 \text{ Hz}, 2 \text{ C, C}^{10}), 78.8 \text{ (s, 2 C, C}^{5}), 91.6 \text{ (d, }^{1}J_{RhC} = 5.4 \text{ Hz}, 2 \text{ C, C}^{12}), 124.4 \text{ (s, 2 C, C}^{8}), 125.0 \text{ (s, 2 C, C}^{3}), 126.2 \text{ (s, 4 C, C}^{3}/C^{7}), 126.5 \text{ (s, 2 C, C}^{15}), 126.6 \text{ (s, 2 C, C}^{6}), 126.8 \text{ (s, 2 C, C}^{14}), 127.7 \text{ (s, 2 C, C}^{16}), 128.4 \text{ (s, 4 C, C}^{1}/C^{2}), 129.0 \text{ (s, 2 C, C}^{9}), 131.2 \text{ (s, 2 C, C}^{13}), 134.8 \text{ (s, 2 C, C}^{11a}), 137.2 \text{ (s, 2 C, C}^{9a}), 137.3 \text{ (s, 2 C, C}^{12a}), 137.8 \text{ (s, 2 C, C}^{16a}), 145.1 \text{ (s, 2 C, C}^{4a}), 145.5 \text{ (s, 2 C, C}^{5a})$

¹⁰³Rh NMR (22.2 MHz, THF-d8): $\delta = 1053$ (s)

ATR IR – neat in cm⁻¹: 3266 (s, NH₂ stretch); 3225 (s, NH₂ stretch); 3010 (m, CH stretch); 2831 (m, CH stretch); 1597 (m); 1575 (m); 1476 (s); 1230 (vs); 1135 (vs); 981 (s); 732 (s)

B) Determination of bond dissociation energies (BDE's) using electrode potentials and thermodyanamic cycles^{S1-S3}.

Bond dissociation energies (BDE's) can be obtained by combining the equilibrium acidity constants, pK_a , of weak acids $[BH]^+$ with the oxidation potentials of their conjugate bases, B, both measured in the same solvent (dmso or acetonitrile are commonly used). This method is based on the thermodynamic cycle shown in Scheme S1 for a compound $[BH]^+$:

Scheme S1. Thermodynamic cycle used to estimate the B-H bond dissociation energy of [BH]⁺ in solution

$$B + H^{1+} \xrightarrow{-e^{-}} B^{1+} + H^{1+}$$

$$PK_{a} \downarrow \qquad \qquad \downarrow E_{red}(H^{+})$$

$$B - H^{1+} \xrightarrow{BDE} B^{1+} + H^{1+}$$

The bond dissociation Gibbs energy ΔG°_{BDE} [kJ mol⁻¹] is given by:

 $\Delta G^{\circ}_{BDE} = 2.303 \text{ RT } pK_a - FE^{\circ}_{red}(H^+) + FE^{\circ}_{ox}(B)$

 ΔG°_{BDE} is related to gas phase bond dissociation energies BDE's which were quantitatively determined by various methods and are generally considered to be quite accurate:

 $\Delta G^{\circ}_{BDE} \approx BDE + \Delta G_{solv} \left(H^{\bullet} \right) - TS^{\circ}_{red} (H^{\bullet})_{g}$

This equation is based on the assumption that the difference in the solvation energies and entropies of $[BH]^+$ and $[BH]^{++}$ is negligible. The magnitude of ΔG_{solv} (H⁺) has been estimated in various solvents and $S^{\circ}_{red}(H^{+})_{g}$ is equal to 114.6 J K⁻¹ mol⁻¹. $E^{\circ}_{red}(H^{+})$ has also been determined for various solvents.

Bordwell derived the following equation (1) which allows a quite accurate estimation of BDE's from measurements in solution and that allows comparisons to be made between compounds belonging to different compound families and with gas-phase values.

(1) BDE = 5.73 p
$$K_a$$
 + 96.5 E°_{fc/fc+} + C

Here the term 5.7 pK_a is the equilibrium acidity constant of the weak acid expressed in kJ mol⁻¹. The term 96.5 $E^{\circ}_{fc/fc+}$ is the oxidation potential of the conjugate base of the weak acid expressed in kJ mol⁻¹ and referenced against the ferrocene/ferrocenium couple, Fc/Fc⁺. The constant C is empirically derived for a given solvent by comparing the solution BDE's with accurate gas phase data and contains the above mentioned values for ΔG_{solv} (H[•]), S[°]_{red}(H[•])_g, and E[°]_{red}(H⁺). Values of C = 306.4 kJ mol⁻¹ and 248.7 kJ mol⁻¹ are given for dmso or acetonitrile, respectively^{S3a}. For a number of compound families (hydrocarbons, RH, amines, RNH₂ and R₂NH, and alcohols, ROH) the BDE's were thus determined and solution and gas phase BDE's coincide mostly within ±4 kJ mol⁻¹.

References:

- S1 For a review on the estimation of bond energies in solution using electrode potentials and thermochemical cycles see: D.M. Wayner, V.D. Parker, Acc. Chem. Res. 1993, 26, 287 294.
- S2 For BDE's see: D. F.McMillen, D. M.Golden, Ann. Rev. Phys. Chem. 1982, 33, 493-532 and references cited therein.
- S3 For N-H BDE's in amines see: a) W.-Z. Liu, F.G. Bordwell, *J. Org. Chem.*, 1996, **61**, 4778 and references therein; b) F. G. Bordwell, J.-P. Cheng, G.-Z. Ji, A. V. Satish, X. Zhang, *J. Am. Chem. Soc.* 1991, **113**, 9790. Bordwell gives the equation $BDE = 1.37 \text{ pK}_{a} + 23.1 \text{ E}^{\circ}_{\text{fc/fc+}} + C$ expressing the data in kcal mol⁻¹ with C = 73.3 kcal mol⁻¹ or 59.5 kcal mol⁻¹ for dmso or acetonitrile, respectively.