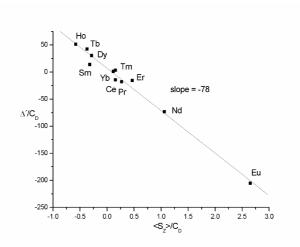

Supplementary materials for:

Lanthanide(III) complexes of a pyridine N-oxide analogue of DOTA: exclusive M isomer formation induced by six-membered chelate ring

Miloslav Polášeka, Jakub Rudovskýa, Petr Hermann*a, Ivan Lukeša, Luce Vander Elstb, Robert N. Mullerb


^aDepartment of Inorganic Chemistry, Universita Karlova, Hlavova 2030, 128 40 Prague 2, Czech Republic. E-mail: petrh@natur.cuni.cz; Fax: +420-221951253; Tel: +420-221951263

^bNMR Laboratory, Department of Organic Chemistry, University of Mons-Hainaut, Avenue du champ de Mars 24, B-7000 Mons, Belgium

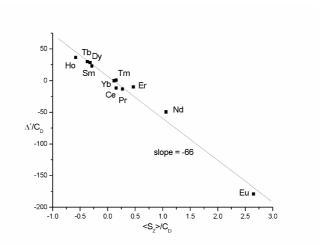
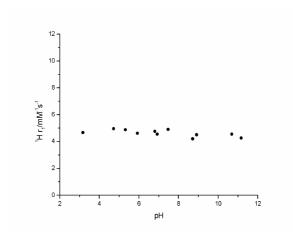
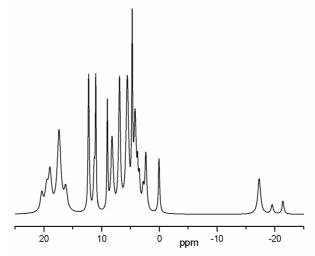
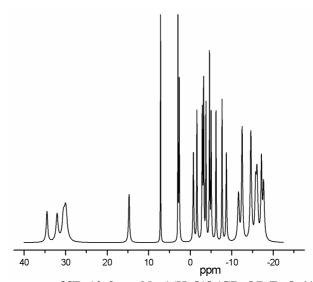
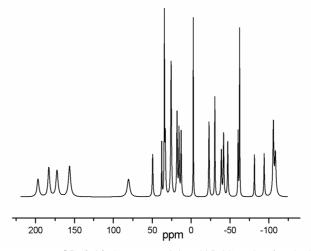


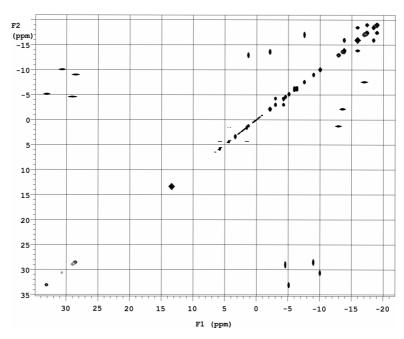
Figure S1. Induced 17 O chemical shift of water in presence of [Dy(do3a-pyNox)(H₂O)] (pH = 7, 25 °C, 400 MHz). The slope obtained from least-square was found to be -50.

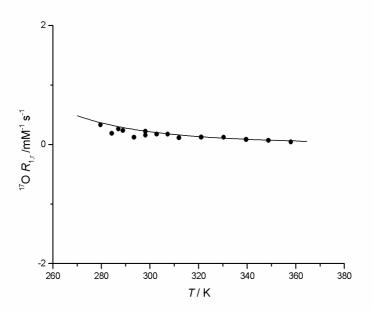

This journal is © The Royal Society of Chemistry 2004

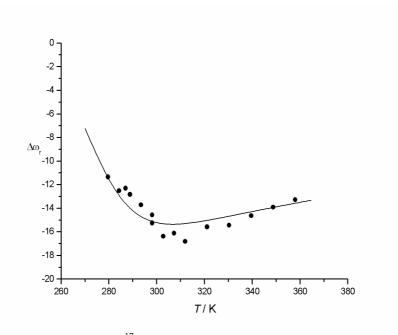

Figure S2A. Water 17 O chemical shifts in presence of [Ln(do3a-pyNox)(H₂O)] (pH = 7; 25 °C, 400 MHz).


Figure S2B. Water 17 O chemical shifts in presence of [Ln(do3a-pyNox)(H₂O)] (pH = 7; 70 °C, 400 MHz).


Figure S3. pH dependence of water proton relaxivity in presence of [Gd(do3a-pyNox)(H₂O)] complex.


Figure S4A. ¹H NMR spectrum of [Nd(do3a-pyNox)(H₂O)] (CD₃OD/D₂O 4/1; 25 °C, 400 MHz).


Figure S4B. ¹H NMR spectrum of [Eu(do3a-pyNox)(H₂O)] (CD₃OD/D₂O 4/1; 25 °C, 400 MHz).


Figure S4C. ¹H NMR spectrum of [Yb(do3a-pyNox)(H₂O)] (CD₃OD/D₂O 4/1; -25 °C, 400 MHz).

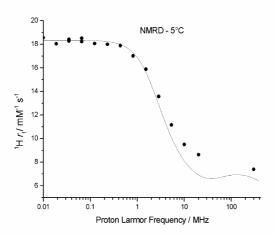

Figure S5. ¹H EXSY spectrum of [Eu(do3a-pyNox)(H₂O)] (CD₃OD/D₂O 4/1; 25 °C, 400 MHz). The FID was accumulated 4 h with mixing time $t_{\rm mix}$ = 20 ms.

Figure S6A. Variable-temperature water ^{17}O R_{1r} relaxation rates measured in presence of [Gd(do3a-pyNox)(H₂O)] (pH = 7, 400 MHz). The curve represents the best result of simultaneous fitting according to BMS equation.

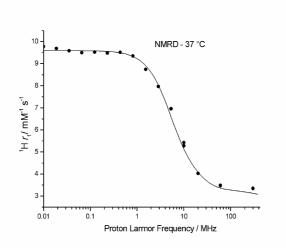

Figure S6B. Variable-temperature water ^{17}O reduced resonance frequences measured in presence of $[Gd(do3a\text{-pyNox})(H_2O)]$ (pH = 7, 400 MHz). The curve represents the best result of simultaneous fitting according to BMS equation.

Figure S7A. 1 H NMRD profile at pH = 7 and 5 $^{\circ}$ C. The curve represents the best result of simultaneous fitting according to BSM equations.

Figure S6B. 1 H NMRD profile at pH = 7 and 25 $^{\circ}$ C. The curve represents the best result of simultaneous fitting according to BMS equations.

Figure S6C. ¹H NMRD profile at pH = 7 and 37 °C. The curve represents the best result of simultaneous fitting according to BSM equations.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

Table S1. The complete set of results obtained from simultaneous least-square fitting of data.

Parameter	[Gd(DO3A-pyNox)(H ₂ O)]
$r_1^{310} [s^{-1} \cdot mM^{-1}]^a$	4.04
$\Delta^2 [10^{20} \mathrm{s}^{-2}]$	0.69 ± 0.03
$\tau_{\rm M}^{298}$ [ns]	39 ± 1
$\Delta H_{M}^{\#} [kJ \cdot mol^{-1}]$	51 ± 2
$\tau_R^{298} [ps]$	74 ± 3
$\tau_{\rm v}^{298}[{\rm ps}]$	2.7 ± 0.1
$A/\hbar \ [10^6 \ \mathrm{rad \cdot s^{-1}}]$	<u>-3.75</u>
$r_{ m GdO}\left[m \AA ight]$	<u>2.5</u>
$r_{ m GdH} [m \AA]$	<u>3.1</u>
A [Å]	<u>3.5</u>
q	<u>1</u>

 $[\]overline{\ }^a$ The value of milimolar relaxivity was obtained at 37 °C and 20 MHz, the value found for 25 °C and 10 MHz is 6.31 s⁻¹·mM⁻¹.