Supporting Information for

A model for two-electron mixed valence in metal-metal bonded dirhodium compounds

Thomas G. Gray and Daniel G. Nocera*
Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307

Index Page
Computational details S1-S3
Table S1. Optimized Cartesian coordinates for triplet 4 S4
Table S2. Optimized Cartesian coordinates for singlet $\mathbf{5}$ S5
Table S3. Optimized Cartesian coordinates for square-planar, singlet $\mathrm{Rh}\left(\mathrm{PF}_{3}\right)_{3} \mathrm{Cl}$ S6
Figure S1. Kohn-Sham orbital energies of 4 S7

This journal is © Royal Society of Chemistry 2005

Computational Details. Calculations were performed within the Gaussian 98 Program suite. ${ }^{1}$ DFT computations employed the exchange functional of Becke ${ }^{2}$ and the correlation functional of Perdew. ${ }^{3}$ The default "extrafine" grid was used throughout. Self-consistent field convergence was achieved with direct methods. Equilibrium geometries were optimized or partially optimized in redundant internal coordinates. ${ }^{4}$ Relativistic effective core potentials were used for rhodium along with the standard Hay-Wadt double- ζ basis set, ${ }^{5-7}$ augmented by the optimized Rh 6 p-function of Couty and Hall. ${ }^{8}$ The $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis of Pople and co-workers ${ }^{9,10}$ was applied to all other atoms. Tight self-consistent field convergence criteria were maintained throughout. Reported energies and relative energies are electronic energies, and are not corrected for zero-point vibrational energies, since we deliberately consider structures that are not minima on the relevant potential energy hypersurface. Stability tests found all converged self-consistent fields to be stable to internal and external perturbations. Canonical Kohn-Sham orbitals were imaged with the program Molekel; default isodensity values were applied. ${ }^{11}$ Extended Hückel calculations were carried out with the program Cacao, using default parameters. ${ }^{12}$

Model complex 4 was optimized within $\mathrm{D}_{3 \mathrm{~d}}$-Symmetry. Being Jahn-Teller unstable, $\mathbf{4}$ is not expected to be a potential-energy minimum, and a harmonic frequency calculation indicates it is not, with seven imaginary frequencies corresponding to PF_{3} librations or rotations.

The geometry of the singlet, square-planar complex $\mathrm{Rh}\left(\mathrm{PF}_{3}\right)_{3} \mathrm{Cl}$ was first optimized with spin-unrestricted methods, and a harmonic frequency calculation indicated the converged structure to be a minimum. The structure was then re-optimized in a spin-unrestricted calculation; the optimizer converged on the first cycle. A spin-unrestricted frequency calculation was not attempted. The energy difference $\left(260 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ reported for $\mathrm{Rh}\left(\mathrm{PF}_{3}\right)_{3} \mathrm{Cl}$ and $\mathbf{4}$ is the difference in calculated electronic energies; this difference more directly reflects the Jahn-Teller destabilization of 4. As such, it has not been "corrected" for entropy or zero-point energy, and we therefore report this relative energy to two significant figures.

The geometry of model compound $\mathbf{5}$ was optimized in a spin-restricted fashion, with singlet multiplicity, and then re-optimized with a spin-unrestricted calculation. The Rh-Rh

This journal is © Royal Society of Chemistry 2005
distance was constrained to be $3.12 \AA$; consequently, neither optimized structure is an energyminimum. Orbital eigenvalues depicted in Figure 3 are those of the spin-unrestricted calculation, to enable comparison to the eigenvalues of $\mathbf{4}$. Because 5 is a spin-singlet, spin- α and $\operatorname{spin}-\beta$ eigenvalues are equal (the density does not break symmetry), and no distinction between spins is made in Figure 3.

5

References

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian 98, Revision A.9: Gaussian, Inc.: Pittsburg, PA, 1998.
2. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
3. Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
4. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17,49-56.
5. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.

This journal is © Royal Society of Chemistry 2005
6. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298.
7. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.
8. Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359-1370.
9. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
10. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654-3655
11. (a) Flükiger, P.; Lüthi, H. P.; Portmann, S.; Weber, J. MOLEKEL 4.3; Swiss Center for Scientific Computing: Manno, Switzerland, 2000-2002. (b) Portmann, S.; Lüthi, H. P. CHIMIA 2000, 54, 766-770.
12. Mealli, C.; Proserpio, D. M. MO Theory Made Visible, J. Chem. Ed. 1990, 67, 399-402.

This journal is © Royal Society of Chemistry 2005

Table S1. Optimized Cartesian coordinates for triplet 4

Atom	x	y	z
Rh	0	0	1.2736521716
P	0	2.308275851	1.6859798662
F	0	2.8406714162	3.1804150726
F	-1.2206762546	3.1958324392	1.1603733671
F	1.2206762546	3.1958324392	1.1603733671
P	-1.9990255259	-1.1541379255	1.6859798662
F	-3.3780102059	-0.5407795733	1.1603733671
F	-2.1573339513	-2.6550528659	1.1603733671
F	-2.4600936102	-1.4203357081	3.1804150726
P	1.9990255259	-1.1541379255	1.6859798662
F	3.3780102059	-0.5407795733	1.1603733671
F	2.4600936102	-1.4203357081	3.1804150726
F	2.1573339513	-2.6550528659	1.1603733671
Cl	0	0	3.819471592
Rh	0	0	-1.2736521716
P	0	-2.308275851	-1.6859798662
F	0	-2.8406714162	-3.1804150726
F	1.2206762546	-3.1958324392	-1.1603733671
F	-1.2206762546	-3.1958324392	-1.1603733671
P	-1.9990255259	1.1541379255	-1.6859798662
F	-2.4600936102	1.4203357081	-3.1804150726
F	-3.3780102059	0.5407795733	-1.1603733671
F	-2.1573339513	2.6550528659	-1.1603733671
P	1.9990255259	1.1541379255	-1.6859798662
F	2.1573339513	2.6550528659	-1.1603733671
F	3.3780102059	0.5407795733	-1.1603733671
F	2.4600936102	1.4203357081	-3.1804150726
Cl	0	0	-3.819471592

This journal is © Royal Society of Chemistry 2005

Table S2. Optimized Cartesian coordinates for singlet $\mathbf{5}$

Atom	x	y	z
Rh	-0.475460963	0.	1.4790299493
Cl	1.8715238841	0.	1.9559552266
P	-0.3233308807	2.192446212	1.9799795325
P	-2.6601376565	0.	1.2667405208
P	-0.3233308807	-2.192446212	1.9799795325
Rh	0.475460963	0.	-1.4790299493
Cl	-1.8715238841	0.	-1.9559552266
P	0.3233308807	2.192446212	-1.9799795325
P	2.6601376565	0.	-1.2667405208
P	0.3233308807	-2.192446212	-1.9799795325
F	0.0574363905	2.4788656883	3.4968552537
F	-1.5778804427	3.1709255529	1.8528644729
F	0.7830382977	3.1006636991	1.2755267906
F	-3.4579682186	0.	2.6550121885
F	-3.412904211	-1.2249401342	0.5913786882
F	-3.412904211	1.2249401342	0.5913786882
F	0.0574363905	-2.4788656883	3.4968552537
F	0.7830382977	-3.1006636991	1.2755267906
F	-1.5778804427	-3.1709255529	1.8528644729
F	-0.0574363905	2.4788656883	-3.4968552537
F	1.5778804427	3.1709255529	-1.8528644729
F	-0.7830382977	3.1006636991	-1.2755267906
F	3.4579682186	0.	-2.6550121885
F	3.412904211	-1.2249401342	-0.5913786882
F	3.412904211	1.2249401342	-0.5913786882
F	-0.0574363905	-2.4788656883	-3.4968552537
F	-0.7830382977	-3.1006636991	-1.2755267906
F	1.5778804427	-3.1709255529	-1.8528644729

This journal is © Royal Society of Chemistry 2005

Table S3. Optimized Cartesian coordinates for square-planar, singlet $\mathrm{Rh}\left(\mathrm{PF}_{3}\right)_{3} \mathrm{Cl}$

Atom	x	y	z
Rh	0.2369880467	0.	0.0672618637
Cl	2.4850540903	0.	0.8523070267
P	0.4325951238	2.2466006649	0.2194843461
P	-1.7722741247	0.	-0.747225381
P	0.4325951238	-2.2466006649	0.2194843461
F	0.8291363717	2.820044808	1.6443771589
F	-0.8113009492	3.1964662279	-0.0916215665
F	1.5255624608	2.9602843929	-0.6841336282
F	-3.0482637005	0.	0.2154801521
F	-2.2028284486	-1.2128105824	-1.6925927618
F	-2.2028284486	1.2128105824	-1.6925927618
F	0.8291363717	-2.820044808	1.6443771589
F	1.5255624608	-2.9602843929	-0.6841336282
F	-0.8113009492	-3.1964662279	-0.0916215665

This journal is © Royal Society of Chemistry 2005

Figure S1. Kohn-Sham orbital energies of 4. Images of selected orbitals are inset. Blue indicates spin- α; red, spin- β.

