Supporting Information for

A model for two-electron mixed valence in metal-metal bonded dirhodium compounds

Thomas G. Gray and Daniel G. Nocera*

Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307

Index	Page
Computational details	S1-S3
Table S1. Optimized Cartesian coordinates for triplet 4	S4
Table S2. Optimized Cartesian coordinates for singlet 5	S5
Table S3. Optimized Cartesian coordinates for square-planar, singlet Rh(PF ₃) ₃ Cl	S6
Figure S1. Kohn-Sham orbital energies of 4	S7

Computational Details. Calculations were performed within the Gaussian 98 Program suite.¹ DFT computations employed the exchange functional of Becke² and the correlation functional of Perdew.³ The default "extrafine" grid was used throughout. Self-consistent field convergence was achieved with direct methods. Equilibrium geometries were optimized or partially optimized in redundant internal coordinates.⁴ Relativistic effective core potentials were used for rhodium along with the standard Hay-Wadt double- ζ basis set,^{5–7} augmented by the optimized Rh 6p-function of Couty and Hall.⁸ The 6-31G(d,p) basis of Pople and co-workers^{9,10} was applied to all other atoms. Tight self-consistent field convergence criteria were maintained throughout. Reported energies and relative energies are electronic energies, and are not corrected for zero-point vibrational energies, since we deliberately consider structures that are not minima on the relevant potential energy hypersurface. Stability tests found all converged self-consistent fields to be stable to internal and external perturbations. Canonical Kohn-Sham orbitals were imaged with the program Molekel; default isodensity values were applied.¹¹ Extended Hückel calculations were carried out with the program Cacao, using default parameters.¹²

Model complex 4 was optimized within D_{3d} -symmetry. Being Jahn-Teller unstable, 4 is not expected to be a potential-energy minimum, and a harmonic frequency calculation indicates it is not, with seven imaginary frequencies corresponding to PF₃ librations or rotations.

The geometry of the singlet, square-planar complex Rh(PF₃)₃Cl was first optimized with spin-unrestricted methods, and a harmonic frequency calculation indicated the converged structure to be a minimum. The structure was then re-optimized in a spin-unrestricted calculation; the optimizer converged on the first cycle. A spin-unrestricted frequency calculation was not attempted. The energy difference (260 kJ mol⁻¹) reported for Rh(PF₃)₃Cl and **4** is the difference in calculated electronic energies; this difference more directly reflects the Jahn-Teller destabilization of **4**. As such, it has not been "corrected" for entropy or zero-point energy, and we therefore report this relative energy to two significant figures.

The geometry of model compound 5 was optimized in a spin-restricted fashion, with singlet multiplicity, and then re-optimized with a spin-unrestricted calculation. The Rh-Rh

distance was constrained to be 3.12 Å; consequently, neither optimized structure is an energyminimum. Orbital eigenvalues depicted in Figure 3 are those of the spin-unrestricted calculation, to enable comparison to the eigenvalues of 4. Because 5 is a spin-singlet, spin- α and spin- β eigenvalues are equal (the density does not break symmetry), and no distinction between spins is made in Figure 3.

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.; Gaussian 98, Revision A.9: Gaussian, Inc.: Pittsburg, PA, 1998.
- 2. Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100.
- 3. Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- 4. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17,49-56.
- 5. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.

- 6. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284-298.
- 7. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299-310.
- 8. Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359-1370.
- 9. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
- Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3655
- (a) Flükiger, P.; Lüthi, H. P.; Portmann, S.; Weber, J. MOLEKEL 4.3; Swiss Center for Scientific Computing: Manno, Switzerland, 2000-2002. (b) Portmann, S.; Lüthi, H. P. *CHIMIA* 2000, *54*, 766-770.
- 12. Mealli, C.; Proserpio, D. M. MO Theory Made Visible, J. Chem. Ed. 1990, 67, 399-402.

Atom	x	у	Z
Rh	0	0	1.2736521716
Р	0	2.308275851	1.6859798662
F	0	2.8406714162	3.1804150726
F	-1.2206762546	3.1958324392	1.1603733671
F	1.2206762546	3.1958324392	1.1603733671
Р	-1.9990255259	-1.1541379255	1.6859798662
F	-3.3780102059	-0.5407795733	1.1603733671
F	-2.1573339513	-2.6550528659	1.1603733671
F	-2.4600936102	-1.4203357081	3.1804150726
Р	1.9990255259	-1.1541379255	1.6859798662
F	3.3780102059	-0.5407795733	1.1603733671
F	2.4600936102	-1.4203357081	3.1804150726
F	2.1573339513	-2.6550528659	1.1603733671
Cl	0	0	3.819471592
Rh	0	0	-1.2736521716
Р	0	-2.308275851	-1.6859798662
F	0	-2.8406714162	-3.1804150726
F	1.2206762546	-3.1958324392	-1.1603733671
F	-1.2206762546	-3.1958324392	-1.1603733671
Р	-1.9990255259	1.1541379255	-1.6859798662
F	-2.4600936102	1.4203357081	-3.1804150726
F	-3.3780102059	0.5407795733	-1.1603733671
F	-2.1573339513	2.6550528659	-1.1603733671
Р	1.9990255259	1.1541379255	-1.6859798662
F	2.1573339513	2.6550528659	-1.1603733671
F	3.3780102059	0.5407795733	-1.1603733671
F	2.4600936102	1.4203357081	-3.1804150726
Cl	0	0	-3.819471592

Table S1. Optimized Cartesian coordinates for triplet 4

This journal is $\ensuremath{\mathbb{C}}$ Royal Society of Chemistry 2005

Atom	x	у	Ζ
Rh	-0.475460963	0.	1.4790299493
Cl	1.8715238841	0.	1.9559552266
Р	-0.3233308807	2.192446212	1.9799795325
Р	-2.6601376565	0.	1.2667405208
Р	-0.3233308807	-2.192446212	1.9799795325
Rh	0.475460963	0.	-1.4790299493
Cl	-1.8715238841	0.	-1.9559552266
Р	0.3233308807	2.192446212	-1.9799795325
Р	2.6601376565	0.	-1.2667405208
Р	0.3233308807	-2.192446212	-1.9799795325
F	0.0574363905	2.4788656883	3.4968552537
F	-1.5778804427	3.1709255529	1.8528644729
F	0.7830382977	3.1006636991	1.2755267906
F	-3.4579682186	0.	2.6550121885
F	-3.412904211	-1.2249401342	0.5913786882
F	-3.412904211	1.2249401342	0.5913786882
F	0.0574363905	-2.4788656883	3.4968552537
F	0.7830382977	-3.1006636991	1.2755267906
F	-1.5778804427	-3.1709255529	1.8528644729
F	-0.0574363905	2.4788656883	-3.4968552537
F	1.5778804427	3.1709255529	-1.8528644729
F	-0.7830382977	3.1006636991	-1.2755267906
F	3.4579682186	0.	-2.6550121885
F	3.412904211	-1.2249401342	-0.5913786882
F	3.412904211	1.2249401342	-0.5913786882
F	-0.0574363905	-2.4788656883	-3.4968552537
F	-0.7830382977	-3.1006636991	-1.2755267906
F	1.5778804427	-3.1709255529	-1.8528644729

 Table S2. Optimized Cartesian coordinates for singlet 5

This journal is $\ensuremath{\mathbb{C}}$ Royal Society of Chemistry 2005

Atom	x	у	Ζ
Rh	0.2369880467	0.	0.0672618637
Cl	2.4850540903	0.	0.8523070267
Р	0.4325951238	2.2466006649	0.2194843461
Р	-1.7722741247	0.	-0.747225381
Р	0.4325951238	-2.2466006649	0.2194843461
F	0.8291363717	2.820044808	1.6443771589
F	-0.8113009492	3.1964662279	-0.0916215665
F	1.5255624608	2.9602843929	-0.6841336282
F	-3.0482637005	0.	0.2154801521
F	-2.2028284486	-1.2128105824	-1.6925927618
F	-2.2028284486	1.2128105824	-1.6925927618
F	0.8291363717	-2.820044808	1.6443771589
F	1.5255624608	-2.9602843929	-0.6841336282
F	-0.8113009492	-3.1964662279	-0.0916215665

Table S3. Optimized Cartesian coordinates for square-planar, singlet Rh(PF₃)₃Cl

Figure S1. Kohn-Sham orbital energies of 4. Images of selected orbitals are inset. Blue indicates spin- α ; red, spin- β .