Direct Intramolecular Arylation of Unactivated Arenes : Application to the Synthesis of Aporphine Alkaloids

Marc Lafrance, Nicole Blaquière and Keith Fagnou*,

Center for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5

Keith.Fagnou@science.uottawa.ca

Supporting Information

General Methods. All experiments were carried out under an atmosphere of nitrogen. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded in CDCl_{3} solutions using a Bruker AVANCE 300 spectrometer with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. High-resolution mass spectra were obtained on a Kratos Concept IIH. Infra-Red analysis was performed with a Bruker EQUINOX 55. Unless otherwise specified, all reagents and solvents were used as is from commercial sources.

2-Bromophenylacetyl chloride ${ }^{1}$

To a solution of 2-bromo phenylacetic acid 6 (6 g , $28 \mathrm{mmol}, 1$ eq.) in 60 mL of dry dichloromethane (DCM) was added oxallyl chloride ($2.68 \mathrm{~mL}, 31 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in a 100 mL round bottom flask equipped with a magnetic stir bar. To the mixture was added 1 drop of dimethylformamide (DMF) and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 4 h . The reaction was then concentrated to produce the corresponding acid chloride as a pale yellow oil ($6.51 \mathrm{~g}, 99 \%$). The crude product was pure by ${ }^{1} \mathrm{H}$ NMR and was consequently used without further purification. ${ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 4.32$ (2H, s), 7.18-7.37 (3H, m), 7.59-7.63 (1H, m).

[^0]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004

2-(2-Bromophenyl)-N-[2-(3,4-dimethoxy-phenyl)-ethyl]-acetamide ${ }^{1}$ (7a)

To a mixture of 3,4-Dimethoxyphenylethylamine ($8.0 \mathrm{~g}, 44 \mathrm{mmol}, 1.0$ eq.) and triethylamine ($6.8 \mathrm{~mL}, 51 \mathrm{mmol}, 1.1$ eq.) in 150 mL of dry DCM was added 2-bromo phenylacetyl chloride ($10.86 \mathrm{~g}, 47 \mathrm{mmol}, 1.05 \mathrm{eq}$.) to a 250 mL round bottom flask equipped with a magnetic stir bar at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 8 h during which time the reaction mixture turned yellow. It was then extracted with DCM and water and then recrystallized using a minimum of DCM followed by addition of $\mathrm{Et}_{2} \mathrm{O}$ until precipitation occurs and was left at $0^{\circ} \mathrm{C}$ for 2 hours to afford 7 a as white needles ($17.70 \mathrm{~g}, 99 \%$) $\mathrm{R}_{\mathrm{f}}=0.59$ on silica gel (10% $\mathrm{MeOH}: D C M) ; \mathrm{mp}=127-129^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right):$ $2.71(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.47(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.67(2 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.86(3 \mathrm{H}$, s), $5.42(1 \mathrm{H}, \mathrm{s}), 6.58-6.74(3 \mathrm{H}, \mathrm{m}), 7.11-7.19(1 \mathrm{H}, \mathrm{m}), 7.27-7.28(2 \mathrm{H}, \mathrm{m}), 7.55$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$) : 35.0, 40.8, 44.1, 55.8, 55.9, 111.2, 111.6, 120.5, 124.9, 127.9, 129.1, 131.0, 131.6, 133.1, 134.7, 147.5, 148.9, 169.4; IR (nujol): 3313 (s), 3062 (w), 1647 (s), 1551 (s), 1235 (s), 1141 (s), 1027 (s) cm^{-1}. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{3}(\mathrm{M}+$) 377.0627; Found : 377.0616.

2-(2-Bromophenyl)-N-phenethyl-acetamide ${ }^{2}$ (7b)

Following the experimental procedure described for the preparation of $\mathbf{7 a}, \mathbf{7 b}$ was obtained as white solid in 95% yield. $R_{f}=0.49$ on silica gel (100% EtOAc with TEA); $m p=111-112^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 2.75(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.47(2 \mathrm{H}$, q, J=6.7Hz), $3.66(2 \mathrm{H}, \mathrm{s}), 5.49(1 \mathrm{H}, \mathrm{s}), 7.05-7.28(8 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (75MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 35.5,40.7,44.0,125.0,126.4,128.0$, 128.6, 128.7, 129.1, 131.7, 133.1, 134.8, 138.6, 169.4; IR (KBr): 3269 (s), 3084

[^1]\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
|(m), 1643 (s), 1562 (s), 1026 (s) cm^{-1}. HRMS calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNO}(\mathrm{M}+$) 317.0415; Found : 317.0423;

1-(2-Bromobenzyl)-6,7-dimethoxy-3,4-dihydro-isoquinoline ${ }^{1}(8 a)$

To a solution of 2-(2-Bromophenyl)-N-[2-(3,4-dimethoxy-phenyl)-ethyl]-acetamide $\quad 7 \mathrm{a} \quad(6.0 \mathrm{~g}$, $16 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in 80 mL of dried DCM was added phosphorous oxychloride ($5.8 \mathrm{~mL}, 63 \mathrm{mmol}, 4.0 \mathrm{eq}$.) in a 250 mL round bottom flask equipped with a magnetic stir bar and a condenser at $0^{\circ} \mathrm{C}$. The resulting mixture was refluxed for 6 h . The reaction mixture turned yellow and was cooled to $0^{\circ} \mathrm{C}$ then made basic by adding slowly a $10 \% \mathrm{NaOH}$ aqueous solution followed by extraction with DCM to afford 8a ($5.76 \mathrm{~g}, 99 \%$) as a pale yellow solid. The product was found to be pure by ${ }^{1} \mathrm{H}$ NMR and was used without further purification. $\mathrm{R}_{\mathrm{f}}=0.37$ on silica gel ($10 \% \mathrm{MeOH}: \mathrm{DCM}$); $\mathrm{mp}=115-$ $117^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 2.67(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz})$, $3.73(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.19(2 \mathrm{H}, \mathrm{s}), 6.66(1 \mathrm{H}, \mathrm{s}), 6.91$ ($1 \mathrm{H}, \mathrm{s}$), $7.05(1 \mathrm{H}, \mathrm{td}, J=7.4,1.5 \mathrm{~Hz}$), 7.18 ($1 \mathrm{H}, \mathrm{td}, J=7.4,1.2 \mathrm{~Hz}$), 7.28 ($1 \mathrm{H}, \mathrm{dd}, J=$ $7.7,1.6 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$) : 25.7, 42.6, 47.4, 56.9, 56.1, 109.0, 110.2, 121.4, 124.5, 127.6, 128.2, 130.2, 131.5, 132.8, 137.7, 147.3, 150.6, 164.9; IR (nujol): 2820 (w), 1515 (m), 1466 (s), 1267 (m), 1144 (m) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{2}(\mathrm{M}+)$ 359.0521; Found: 359.0476;

1-(2-Bromobenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline ${ }^{1}$

To a solution of dihydroisoquinoline $\mathbf{8 a}(5.76 \mathrm{~g}$, $16 \mathrm{mmol}, 1.0$ eq.) in 80 mL of MeOH at $0^{\circ} \mathrm{C}$, was added slowly sodium borohydride $(0.79 \mathrm{~g}, 21 \mathrm{mmol}$, 1.3 eq .) in a 250 mL round bottom flask equipped with a magnetic stir bar. The resulting mixture was stirred for 3 h at $23^{\circ} \mathrm{C}$. The reaction mixture was then cooled to $0^{\circ} \mathrm{C}$ and a brine solution was added and then extracted with DCM. Chromatography on silica gel neutralized with triethylamine (100% EtOAc) afforded the amine $\left(5.71 \mathrm{~g}, 99 \%\right.$) as a clear oil. $\mathrm{R}_{\mathrm{f}}=0.19$ on silica
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
gel (100% EtOAc with 1% TEA); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$): 2.67 $(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.73(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.19(2 \mathrm{H}, \mathrm{s})$, $6.66(1 \mathrm{H}, \mathrm{s}), 6.91(1 \mathrm{H}, \mathrm{s}), 7.05(1 \mathrm{H}, \mathrm{td}, J=7.4,1.5 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{td}, J=7.4,1.2 \mathrm{~Hz})$, $7.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 29.4,40.0,43.2,54.8,55.8,55.9,109.6,111.6,124.9$, 127.1, 127.4, 128.2, 130.5, 132.0, 133.0, 138.8, 147.0, 147.4; IR: 3335 (w), 2933 (s), 2832 (s), 1523 (s), 1471 (s), 1254 (s), 1220 (s), 1108 (m), 1025 (s) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}_{2}\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}\right)$ 192.1025; Found: 192.1032. MS (CI): m/z (\%) = 362 (38), 302 (21), 280 (28), 192 (100), 176 (41), 132 (90);

1-(2-bromobenzyl)-1,2,3,4-tetrahydroisoquinoline

To a solution of 2-(2-Bromophenyl)-N-phenethylacetamide $\mathbf{7 b}(4.0 \mathrm{~g}, 13 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in a 100 mL round bottom flask equipped with a magnetic stirrer was added polyphosphoric acid ($33.27 \mathrm{~g}, 332.7 \mathrm{mmol}, 25.6 \mathrm{eq}$.) and the resulting mixture was heated to $150^{\circ} \mathrm{C}$ overnight. The reaction was then allowed to cool to room temperature and a solution of 10% NaOH was added until basic. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ to afford $\mathbf{8 b}(3.91 \mathrm{~g}, 99 \%)$ as a brownish oil. The product was found to be pure by ${ }^{1} \mathrm{H}$ NMR and was used without any further purification. This compound was found to be unstable and decomposes on sitting or exposure to silica gel. It was therefore reduced to the amine immediately. $\mathrm{R}_{\mathrm{f}}=0.35$ on silica gel ($30 \% \mathrm{EtOAc}$ neutralized with TEA); ${ }^{1} \mathrm{H}$ NMR (300MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 2.73(2 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 3.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 4.19(3 \mathrm{H}, \mathrm{s}), 7.03-7.09(1 \mathrm{H}, \mathrm{m}), 7.16-7.25(4 \mathrm{H}$, $\mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{td}, J=7.4,1.1 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR (75MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 26.0,42.3,47.2,124.8,125.2,126.9$, $127.4,127.5,128.0,128.8,130.4,130.6,132.7,137.6,137.8,165.2$; То а solution of the crude dihydroisoquinoline ($3.91 \mathrm{~g}, 13 \mathrm{mmol}, 1.0 \mathrm{eq}$) in 100 mL of methanol (MeOH) at $0^{\circ} \mathrm{C}$, was added slowly sodium borohydride $(0.64 \mathrm{~g}, 17 \mathrm{mmol}$, 1.3 eq .) in a 250 mL round bottom flask equipped with a magnetic stir bar. The resulting mixture was stirred for 3 h at $23^{\circ} \mathrm{C}$. The reaction mixture was then
cooled to $0^{\circ} \mathrm{C}$ and a brine solution was added and then extracted with DCM. Chromatography on silica gel neutralized with triethylamine (30\% EtOAc) afforded the amine (3.62g, 92\%) as a pale yellow oil. $R_{f}=0.32$ on silica gel (30% EtOAc with 1% TEA); ${ }^{1} \mathrm{H}$ NMR (300MHz, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$): 1.44 ($1 \mathrm{H}, \mathrm{s}$), 2.81$2.87(2 \mathrm{H}, \mathrm{m}), 2.94-3.02(2 \mathrm{H}, \mathrm{m}), 3.23-3.31(1 \mathrm{H}, \mathrm{m}), 3.43(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7,3.3$ $\mathrm{Hz}), 4.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,3.1 \mathrm{~Hz}), 7.10-7.20(4 \mathrm{H}, \mathrm{m}), 7.28-7.30(2 \mathrm{H}, \mathrm{m}), 7.35-$ $7.38(1 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$) :30.1, 40.3, 43.2, 55.4, 125.2, 126.1, 126.5, 126.8, 127.7, 128.5, 129.5, 132.2, 133.4, 135.4, 138.8, 139.0; IR: 3336 (w), 3061 (m), 2927 (s), 2832 (m), 1469 (m), 1126 (m), $1025(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}\right)$ 132.0813; Found : 132.0800. MS (CI): m/z (\%) = 302 (35), 220 (27), 132 (100);

1-(2-Bromobenzyl)-6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-carboxylic acid tert-butyl ester (9a)

To a solution of 1-(2-Bromobenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline ($1.4 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.0$ eq.), diisopropylethylamine ($1.35 \mathrm{~mL}, 7.8 \mathrm{mmol}, 2.0$ eq.) and 3 mg of dimethylamino pyridine (DMAP) in DCM (40 mL) was added slowly di-tert-butyl dicarbonate ($1.07 \mathrm{~mL}, 4.7 \mathrm{mmol}, 1.2 \mathrm{eq}$.) and the resulting mixture was stirred overnight at $23^{\circ} \mathrm{C}$. The reaction was then quenched by adding a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with DCM. Chromatography on triethylamine neutralized silica gel (100\% Ethyl Acetate) afforded 9a as a white crystalline solid ($1.44 \mathrm{~g}, 80 \%$). $\mathrm{R}_{\mathrm{f}}=0.51$ on silica gel (100% EtOAc with 1% TEA); $m p=108-$ $109^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, DMSO d-6, 383K): $1.21(9 \mathrm{H}, \mathrm{s}), 2.49-2.8(2 \mathrm{H}$, m), 3.07-3.23 (2H, m), 3.32-3.41 (1H, m), 3.70 (3H, s), 3.76 (3H, s), 4.00-4.07 $(1 \mathrm{H}, \mathrm{m}), 5.29-5.33(1 \mathrm{H}, \mathrm{m}), 6.70(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}), 7.12-7.29(3 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}$, d, J=7.9Hz); ${ }^{13} \mathrm{C}$ NMR (75MHz, DMSO d-6, 383K): 28.3, 28.7, 38.2, 42.7, 54.8, $57.1,79.5,112.9,114.5,125.6,127.8,128.1,129.0,130.1,132.9,133.1,138.9$, 148.8, 149.4, 154.5; IR: 3063 (w), 2931 (s), 1686 (s), 1519 (m), 1420 (m), 1228
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
(m), 1161 (s), 1099 (m) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{BrNO}_{4}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}\right)$ 388.0548; Found: 388.0559.

1-[1-(2-Bromobenzyl)-6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl]ethanone (9b)

To a solution of 1-(2-Bromobenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline ($1.4 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.0 \mathrm{eq}$.), diisopropylethylamine ($1.35 \mathrm{~mL}, 7.8 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and 3 mg of DMAP in dry DCM was added slowly acetic anhydride ($0.80 \mathrm{~mL}, 7.8 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and the resulting mixture was stirred overnight at $23^{\circ} \mathrm{C}$. The reaction was then quenched by adding a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with DCM. Chromatography on TEA neutralized silica gel (100% Ethyl Acetate) afforded 9b as a white solid (1.22g, 78%). $m p=122-123^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ; \mathrm{R}_{\mathrm{f}}=0.30$ on silica gel (100% EtOAc with 1% TEA); ${ }^{1} \mathrm{H}$ NMR (300MHz, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$, mixture of rotomers): $1.49(2 \mathrm{H}$, s), 2.09 ($1 \mathrm{H}, \mathrm{s}$), 2.66-2.95 ($2 \mathrm{H}, \mathrm{m}$), 3.08-3.31 ($2.7 \mathrm{H}, \mathrm{m}$), 3.34-3.40 (1H, m), 3.62$3.79(0.6 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{s}), 3.85(3.5 \mathrm{H}, \mathrm{s}), 3.87(1.5 \mathrm{H}, \mathrm{s}), 4.80-4.86(0.6 \mathrm{H}, \mathrm{m})$, $5.02-5.07(0.7 \mathrm{H}, \mathrm{m}), 5.80(0.3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 6.29(0.3 \mathrm{H}, \mathrm{s}), 6.59(0.3 \mathrm{H}, \mathrm{s}), 6.63$ $(0.7 \mathrm{H}, \mathrm{s}), 6.76(0.7 \mathrm{H}, \mathrm{s}), 7.02-7.29(3 \mathrm{H}, \mathrm{m}), 7.48(0.3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.60(0.7 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}$, TMS, mixture of rotomers) : 20.9, 22.3, 28.3, 28.9, 35.3, 41.7, 41.8, 43.3, 53.1, 56.1, 56.2, 56.3, 56.3, 56.9, 110.0, $110.7,111.2,111.8,125.0,125.9,126.1,127.0,127.5,128.3,128.3,128.5$, $129.3,132.0,132.6,132,9,133.2,137.5,138.2,147.6,147.8,148.1,148.5$, 169.6, 170.1; IR: 3017 (w), 3011 (s), 2956 (s), 1637 (s), 1519 (m), 1422 (s), $1253(\mathrm{~m}), 1122$ (m) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{3}\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}\right)$ 234.1130; Found: 234.1094. MS (CI): m/z (\%) = 404 (51), 302 (20), 234 (99), 220 (21), 192 (93), 176 (27), 132 (100);]

[^2]\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2004

To a solution of 1-(2-Bromobenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydro-isoquinoline $(1.4 \mathrm{~g}$, $3.9 \mathrm{mmol}, 1.0$ eq.) and pyridine $(0.47 \mathrm{~mL}, 5.8$ mmol, 1.5 eq.) in dichloromethane (DCM) was added slowly p-toluenesulfonyl chloride $(0.81 \mathrm{~g}$, $4.3 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and the resulting mixture was stirred overnight at $23^{\circ} \mathrm{C}$. The reaction was then quenched by adding a solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and was extracted with DCM. The product was then purified by silica chromatography (100\% EtOAc) to afford 9c as a white crystalline solid (1.04g, 54\%). $R_{f}=0.58$ on silica gel ($100 \% \mathrm{EtOAc}$); $\mathrm{mp}=132-133^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}\right.$, TMS): $2.29(3 \mathrm{H}, \mathrm{s}), 2.53-2.59(1 \mathrm{H}, \mathrm{m}), 2.67-2.78(1 \mathrm{H}, \mathrm{m}), 3.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz})$, $3.57(1 \mathrm{H}, \mathrm{dd}, J=14.4,4.4 \mathrm{~Hz}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.4$, $4.6 \mathrm{~Hz}), 5.22(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{s}), 7.05(4 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $7.15(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) 7.44(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}$, TMS) : 21.1, 26.3, 38.8, 43.0, 55.4, 55.5, 109.5, 111.0, 124.8, 124.9, 126.7, 127.0, 127.1, 128.0, 129.0, 132.0, 132.3, 136.9, 137.0, 142.5, 146.6, 147.6; IR: 2968 (w), 2937 (s), 1517 (m), 1463 (m), 1251 (m), 1156 (m), 1107 (m), 1021 (m) cm^{-1}. HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrSNO}_{4}\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}\right) 346.1113$; Found : 346.1145. MS (CI): m/z (\%) = 516 (31), 436 (5), 346 (100), 282 (21), 192 (63);
tert-butyl 1-(2-bromobenzyl)-3,4-dihydroisoquinoline-2(1H)-carboxylate (10a)

Following the experimental procedure described for the preparation of $9 \mathrm{a}, 10 \mathrm{a}$ was obtained as a clear crystalline solid in 88% yield after silica gel chromatography (10% EtOAc/Hexane). $\quad\left(R_{f}=0.59\right.$ on silica gel (30% EtOAc); mp $=108-110{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}$, TMS, mixture of rotomers): 1.08 ($7.5 \mathrm{H}, \mathrm{s}$), 1.32 $(1.5 \mathrm{H}, \mathrm{s}), 2.72-3.13(3 \mathrm{H}, \mathrm{m}), 3.25-3.35(1.8 \mathrm{H}, \mathrm{m}), 3.40-3.50(0.2 \mathrm{H}, \mathrm{m}), 3.98$ ($0.2 \mathrm{H}, \mathrm{dt}, J=12.9,5.0 \mathrm{~Hz}$), 4.41 ($0.8 \mathrm{H}, \mathrm{dd}, J=13.3,5.0 \mathrm{~Hz}$), $5.46-5.56$ ($1 \mathrm{H}, \mathrm{m}$), $7.07-7.26(6.20 \mathrm{H}, \mathrm{m}), 7.40-7.43(0.8 \mathrm{H}, \mathrm{m}), 7.50(0.2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.57(0.8 \mathrm{H}, \mathrm{d}$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004
$J=7.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$, mixture of rotomers) : 28.3, 28.7, 29.0, 29.2, 36.5, 39.1, 42.6, 43.2, 54.3, 54.4, 79.9, 125.8, 126.5, 126.6, $127.0,127.1,127.4,127.5,127.8,127.9,128.4,128.7,129.0,129.6,131.9$, 132.3, 133.0, 134.9, 137.7, 138.5, 154.7; HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{O}$) 328.0337; Found : 328.0345. IR: 2977 (w), 2930 (m), 1690 (s), 1451 (m), $1158(\mathrm{~m}) \mathrm{cm}^{-1}$.

1-[1-(2-Bromobenzyl)-3,4-dihydro-1H-isoquinolin-2-yl]-ethanone (10b)

Following the experimental procedure described for the preparation of $\mathbf{9 b}$, tetrahydroisoquinoline $\mathbf{1 0 b}$ was obtained as a pale yellow oil in 81% yield after a silica gel chromatography ($30 \% \mathrm{EtOAc} /$ Hexane). $\mathrm{R}_{\mathrm{f}}=0.16$ on silica gel (30% EtOAc/Hex with 1% TEA); ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$, mixture of rotomers): $1.41(2.1 \mathrm{H}, \mathrm{s}), 2.02(0.9 \mathrm{H}, \mathrm{s}), 2.73-2.99$ $(2 \mathrm{H}, \mathrm{m}), 3.05-3.20(1.7 \mathrm{H}, \mathrm{m}), 3.27-3.39(1 \mathrm{H}, \mathrm{m}), 3.64-3.68(0.6 \mathrm{H}, \mathrm{m}), 4.79-4.85$ $(0.7 \mathrm{H}, \mathrm{m}), 5.10-5.14(0.7 \mathrm{H}, \mathrm{m}), 5.80(0.3 \mathrm{H}, \mathrm{t}, \quad J=6.4 \mathrm{~Hz}), 7.01-7.25(6.3 \mathrm{H}, \mathrm{m})$, $7.38(0.7 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 7.45(0.3 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.56(0.7 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (75MHz, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}$, TMS, mixture of rotomers) : 20.8, 22.3, 28.7, 29.37, $35.3,41.8,42.0,43.3,53.4,57.2,125.1,125.7,126.7,127.2,127.3,127.5127 .6$, $127.9,128.3,128.6,128.8,129.4,129.7,131.9,132.5,132.9,133.2,134.3$, 134.9, 136.7, 136.8, 137.5, 138.0, 169.3, 169.8; IR: 3063 (w), 2932 (s), 1636 (s), $1421(\mathrm{~m}), 1026(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS calculated for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Br}\right)$ 174.0919; Found : 174.0936. MS (CI): m/z (\%) = 344 (72), 264 (31), 174 (97), 144 (39), 132 (100);

General procedure:

1-(1,2-Di1,2-Dimethoxy-4,5,6a,7-tetrahydro-dibenzoquinoline-6-carboxylic acid tert-butyl ester (11a)

To a oven dried flask was added tetrahydroisoquinoline 9 a ($0.101 \mathrm{~g}, 0.22 \mathrm{mmol}, 1.0$ eq.), palladium (II) acetate ($0.0025 \mathrm{~g}, 0.011 \mathrm{mmol}$, 0.05 eq.), potassium acetate $(0.040 \mathrm{~g}, 0.44 \mathrm{mmol}$, 2.0eq.) and 2-(diphenylphosphino)-2'-(N,N-dimethylamino)biphenyl (0.0084 g , 0.022 mmol , 0.1 eq.) followed by rigorous purging with nitrogen. Dimethylacetamide (DMA) $(2 \mathrm{~mL})$ was then added and the mixture was heated to $135^{\circ} \mathrm{C}$ for 4.5 h in a preheated oil bath. The product was then loaded on a silica gel column ($20 \% \mathrm{EtOAc} / \mathrm{Hex}$) to afford 11a as a white solid ($0.075 \mathrm{~g}, 90 \%$). ($\mathrm{R}_{\mathrm{f}}=$ 0.57 on silica gel ($100 \% \mathrm{EtOAc}$); $\mathrm{mp}=149-151^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 1.49(9 \mathrm{H}, \mathrm{s}), 2.63-3.00(5 \mathrm{H}, \mathrm{m}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.89(3 \mathrm{H}, \mathrm{s})$, 4.41-4.44 (1H, m), 4.64-4.69 (1H, m), $6.67(1 \mathrm{H}, \mathrm{s}), 7.21-7.34(3 \mathrm{H}, \mathrm{m}), 8.44(1 \mathrm{H}$, d, J=7.8 Hz); ${ }^{13} \mathrm{C}$ NMR (75MHz, CDCl $\left.{ }_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 28.8,30.7,35.7,38.7$, 51.9, 56.2, 60.3, 80.2, 111.7, 126.8, 127.3, 127.9, 128.0, 128.4, 128.7, 130.1, 132.0, 137.3, 145.8, 152.2, 155.0; IR: 3070 (s), 2930 (s), 1687 (s), 1406 (m), 1249 (m), 1163 (m), 1106 (m) cm^{-1}. HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}(\mathrm{M}+)$ 381.1940; Found : 381.1943.
methoxy-4,5,6a,7-tetrahydro-dibenzo[de,g]quinolin-6-yl)-ethanone
(NAcetyl nornuciferine) ${ }^{3}$ (11b)

Following the general procedure, 11b was obtained as a white solid in 99% yield after a column on silica (100\% EtOAc). $\quad R_{f}=0.17$ on silica gel (100\% EtOAc with TEA); mp $=223-224^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300MHz, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}$, TMS, mixture of rotormers): 2.16

[^3]\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2004
(1.3H, s), $2.22(1.7 \mathrm{H}, \mathrm{s}), 2.64-2.93(3.4, \mathrm{~m}), 3.03-3.15(1.0 \mathrm{H}, \mathrm{m}), 3.31(0.5 \mathrm{H}, \mathrm{t}$, $J=12.3 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{m}), 4.01(0.6 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}), 4.57(0.5 \mathrm{H}, \mathrm{d}$, $J=12.5 \mathrm{~Hz}), 4.97(0.5 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 5.10(0.6 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 6.67(0.6 \mathrm{H}, \mathrm{s})$, $6.70(0.4 \mathrm{H}, \mathrm{s}), 7.27-7.33(3 \mathrm{H}, \mathrm{m}), 8.42-8.48(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 293K, TMS, mixture of rotomers) : 21.6, 22.6, 29.9, 30.7, 34.0, 36.3, 36.5, 41.9, 50.3, 53.7, 55.9, 59.9, 111.2, 111.6, 125.4, 126.4, 126.9, 127.3, 127.4, 127.7, 127.7, 127.8, 128.0, 128.3, 128.6, 128.6, 128.9, 130.1, 131.5, 131.6, 136.1, 136.8, 145.5, 145.7, 152.0, 152.2, 169.64; IR: 2935 (s), 2892 (m), 1625 (s), 1443 (m), 1423 (m), $1029(\mathrm{~m}) \mathrm{cm}^{-1}$. HRMS calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{3}(\mathrm{M}+)$ 323.1521; Found : 323.1527.

1,2-Dimethoxy-6-(toluene-4-sulfonyl)-5,6,6a,7-tetrahydro-4Hdibenzo[de,g]quinoline (11c)

Following the general procedure, 11c was obtained as a white solid in 99% yield after a column on silica ($20 \% \mathrm{EtOAc} /$ Hexane). $\quad\left(\mathrm{R}_{\mathrm{f}}=0.38\right.$ on silica gel (30% EtOAc); mp $=179-181^{\circ} \mathrm{C}$ $\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right):$ 2.32-2.48 ($2 \mathrm{H}, \mathrm{m}$), $2.37(3 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=13.8 \mathrm{~Hz}), 3.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.9$, $4.4 \mathrm{~Hz}), 3.24-3.33(1 \mathrm{H}, \mathrm{m}), 3.63(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 4.06-4.13(1 \mathrm{H}$, m), $4.59(1 \mathrm{H}, \mathrm{dd}, J=13.7,4.2 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{s}), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.26-7.36$ $(3 \mathrm{H}, \mathrm{m}), 7.69(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 293K, TMS) : 21.8, 29.0, 38.2, 41.2, 53.4, 56.2, 60.4, 111.6, 125.6, 127.2, 127.5, 128.2, 128.2, 128.7, 128.8, 129.2, 130.2, 131.7, 136.7, 138.2, 143.6, 146.0, 152.5; IR: 2928 (s), 2851 (m), 1452 (m), 1319 (m), 1149 (s), 1091 (m) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{SNO}_{4}(\mathrm{M}+)$ 435.1504; Found : 435.1488.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2004

4,5,6a,7-tetrahydro-dibenzoquinoline-6-carboxylic acid tert-butyl ester (13a)

Following the general procedure, 13a was obtained as a white solid in 99% yield after a column on silica (10\% ether/Hexane). $\quad\left(R_{f}=0.76\right.$ on silica gel (70\% EtOAc); mp $=153-155^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$): 1.51 ($9 \mathrm{H}, \mathrm{s}$), 2.71-2.79 ($1 \mathrm{H}, \mathrm{m}$), 2.84-3.01 (3H, m), 3.1 (1H, dd, J=13.9, 4.1 Hz), 4.44-4.46 (1H, m), 3.89 4.86$4.91(1 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.24-7.35(4 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz})$, 7.77 (1H, d, J=7.6 Hz); ${ }^{13} \mathrm{C}$ NMR (75MHz, $\left.\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}\right): 28.8,30.7,34.6$, $39.0,51.8,80.2,122.6,124.0,127.1,127.6,128.1,128.2,129.0,133.0,134.2$, 134.7, 135.3, 136.0, 155.0; IR: 2963 (m), 2929 (s), 1677(s), 1414 (m), 1212 (s), 1113 (m) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$; 264.102 Found : 264.0968.

1-(4,5,6a,7-tetrahydro-dibenzo[de,g]quinolin-6-yl)-ethanone ${ }^{3}$ (13b)

Following the general procedure, 13b was obtained as a white solid in 76% yield after a column on silica $\left(100 \%\right.$ EtOAc). $\quad R_{f}=0.29$ on silica gel $(100 \%$ EtOAc); mp = $205-207{ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right) ; 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, 293K, TMS, mixture of rotormers): $2.20(1.1 \mathrm{H}, \mathrm{s}), 2.24$ (1.9H, s), 2.72-2.97 (3.4, m), 3.1-3.22 (1.0H, m), 3.31 ($0.6 \mathrm{H}, \mathrm{t}, J=11.9 \mathrm{~Hz}$), 4.01$4.05(0.6 \mathrm{H}, \mathrm{m}), 4.74-4.79(0.4 \mathrm{H}, \mathrm{m}), 4.98-5.02(0.4 \mathrm{H}, \mathrm{m}), \quad 5.26-5.32(0.6 \mathrm{H}, \mathrm{m})$, 7.08-7.15 (1H, m), 7.25-7.36 (4H, m), 7.61-7.63 (1H, m), 7.75-7.82 (1H, m); ${ }^{13} \mathrm{C}$ NMR (75MHz, $\mathrm{CDCl}_{3}, 293 \mathrm{~K}, \mathrm{TMS}$, mixture of rotomers) : 21.9, 23.0, 30.2, 31.0, $33.2,35.8,36.9,42.5,50.6,53.9,122.8,122.9,123.9,124.2,127.1,127.6$, 127.8, 128.1, 128.2, 128.3, 128.3, 128.4, 128.8, 129.4, 132.2, 132.9, 133.9, 134.1, 134.3, 134.6, 134.9, 135.1 135.6, 135.8, 169.5, 170.0; IR: 2959 (w), 2925 (s), 1730 (s), 1434 (m), 1417 (m) cm ${ }^{-1}$. HRMS calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}(\mathrm{M}+)$ 263.1310; Found : 263.1298.

[^0]: ${ }^{1}$ Kuo, R.-Y.; Wu C.-C.; Chang, F.-R.; Yeh, J.-L.; Chen I.- J.; Wu, Y.- C.; Bioorganic \& Medicinal Chemistry Letters, 2003, 13, 821-23.

[^1]: ${ }^{2}$ Pandney, G. D.; Tiwari, Kamala P.; Tetrahedron, 1981, 37 (6), 1213-14.

[^2]: 1-(2-Bromobenzyl)-6,7-dimethoxy-2-(toluene-4-sulfonyl)-1,2,3,4-tetrahydroisoquinoline (9c)

[^3]: ${ }^{3}$ Kupchan, M. S.; Moniot, J. L.; Kanojia, R. M.; O’Brien, J. B.; J. Org. Chem., 1971, 36 (17), 2413-18.

