Cofactor-dependent enzyme catalysis in functionalized ionic solvents

Adam J.Walker & Neil C. Bruce

Electronic Supporting Information

i.) Structures and analytical data for novel ionic liquids (2 and 4-6)

2: NMR [¹H, 400 MHz, d_6 -DMSO, $\delta(\text{ppm})$]: 0.88 (t, 3H, J = 10 Hz, δ -C<u>H₃</u>), 1.23 (h, 2H, J = 20 Hz, γ -C<u>H₂</u>), 1.75 (p, 2H, J = 12 Hz, β -C<u>H₂</u>), 3.46 (s, 2H, HOC<u>H₂</u>), 3.85 (s, 3H, *N*-C<u>H₃</u>), 4.17 (t, 2H, J = 6 Hz, α -C<u>H₂</u>), 4.35 (br. s, 1H, removed by D₂O shake, CH₂O<u>H</u>). 7.75 (d, 1H, J = 2 Hz, 4-<u>H</u>), 7.67 (d, 1H, J = 2 Hz, 5-<u>H</u>), 9.43 (br, 1H, reduced by D₂O shake, 2-<u>H</u>). FT-IR [ATR, cm⁻¹]: 3373, 3063, 1169, 1568, 2960, 1464, 753, 1361.

4: NMR [¹H, 400 MHz, *d*₆-DMSO, δ(ppm)]: 1.92 (p, 2H, *J* = 16 Hz, β-C<u>H</u>₂), 3.40 (t, 2H, *J* = 5 Hz, α-C<u>H</u>₂), 3.80 (s, 1H, removed by D₂O shake, CH₂O<u>H</u>), 3.83 (s, 3H, *N*-C<u>H</u>₃), 4.21 (t, 2H, *J* = 8 Hz, γ-C<u>H</u>₂), 7.65 (br. d, 1H, 4-<u>H</u>), 7.72 (br. d, 1H, 5-<u>H</u>), 9.13 (s, 1H, 2-<u>H</u>). FT-IR [ATR, cm⁻¹]: 871, 3382, 1167, 1576, 2963, 559, 624, 1464, 742, 1340.

5: NMR [¹H, 400 MHz, d_6 -DMSO, δ (ppm)]: 1.92 (p, 2H, J = 16 Hz, β -CH₂), 2.0 (br. s, 1H HOCH₂CO₂⁻), 3.40 (t, 2H, J = 5 Hz, α -CH₂), 3.52 (s, 2H, CH₂CO₂⁻), 3.75 (br. s, 1H, removed by D₂O shake, CH₂O<u>H</u>), 3.83 (s, 3H, *N*-C<u>H₃</u>), 4.21 (t, 2H, *J* = 8 Hz, γ-C<u>H₂</u>), 7.65 (br. d, 1H, 4-<u>H</u>), 7.72 (br. d, 1H, 5-H), 9.13 (s, 1H, 2-<u>H</u>). FT-IR [ATR, cm⁻¹]: 1731, 1634, 1576, 3390, 1167, 871, 1061, 1088, 1228

6: NMR [¹H, 400 MHz, *d*₆-DMSO, δ(ppm)]: 1.85 (p, 2H, *J* = 16 Hz, β-C<u>H</u>₂), 3.36 (t, 2H, *J* = 5 Hz, α-C<u>H</u>₂), 3.80 (s, 1H, removed by D₂O shake, CH₂O<u>H</u>), 3.83 (s, 3H, *N*-C<u>H</u>₃), 4.18 (t, 2H, *J* = 8 Hz, γ-C<u>H</u>₂), 7.70 (br. d, 1H, 4-<u>H</u>), 7.78 (br. d, 1H, 5-<u>H</u>), 9.38 (s, 1H, reduced by D₂O shake, 2-<u>H</u>).

ii.) Reaction plots

a.) Effect of varying water content on level of accumulated codeinone/neopinone produced from codeine by morphine dehydrogenase after 24 hours in ionic liquids **1-5**. Cofactor recycling was elicited using alcohol dehydrogenase in **1-3**, glucose dehydrogenase in **4** & **5**.

b.) Accumulation of codeinone/neopinone produced from codeine by morphine dehydrogenase in ionic liquids **1-5** and phosphate buffer. RTIL water content < 100 ppm. Cofactor recycling as above.

iii.) Product analytical data

Codeinone: NMR [¹H, 400 MHz, CDCl₃, δ (ppm)]: 1.81 (d, 1H, J = 13 Hz, 15α -<u>H</u>), 2.03 (t, 1H, J = 10 Hz, 15β -<u>H</u>), 2.28 (m, 2H, 16-<u>H</u>₂), 2.42 (s, 3H, *N*-C<u>H</u>₃), 2.57 (d, 1H, J = 16 Hz, 10α -<u>H</u>), 3.08 (d, 1H, J = 26 Hz, 10β -<u>H</u>), 3.16 (s, 1H, 9-<u>H</u>), 3.38 (s, 1H, 14-<u>H</u>), 3.81 (s, 3H, 3-*O*-C<u>H</u>₃), 4.67 (s, 1H, 5-<u>H</u>), 6.05 (d, 1H, J = 14 Hz, 7-<u>H</u>), 6.59 (d, 1H, J = 17 Hz, 2-<u>H</u>), 6.63 (m, 2H, 1-<u>H</u> + 8-<u>H</u>).

FT-IR [KBr, cm⁻¹]: 1670 (C=O stretch), 1271, 1501, 1057, 800, 1238, 936, 1436, 1028.

Neopinone: NMR [¹H, 400 MHz, CDCl₃, δ (ppm)]: 1.88 (t, 1H, *J* = 15 Hz, 15 α -H), 1.92 (tt, 1H, *J* = 10 Hz, 15 β -H), 2.31 (m, 2H, 16-<u>H</u>₂), 2.48 (s, 3H, *N*-C<u>H</u>₃), 2.77 (d, 1H, *J* = 6 Hz, 10 α -H), 3.27 (d, 1H, *J* = 10 Hz, 10 β -<u>H</u>), 3.33 (br. s, 1H, 7 α -<u>H</u>), 3.64 (d, 1H, *J* = 6 Hz, 9-<u>H</u>), 3.91 (s, 3H, 3-*O*-C<u>H</u>₃), 3.95 (d, 1H, *J* = 15 Hz, 7 β -<u>H</u>), 5.00 (s, 1H, 5-<u>H</u>), 5.50 (d, 1H, *J* = 5 Hz, 8-<u>H</u>), 6.69 (d, 1H, *J* = 8 Hz, 2-<u>H</u>), 6.72 (d, 1H, *J* = 8 Hz, 1-<u>H</u>).

FT-IR [ATR, cm⁻¹]: 1051, 1256, 750, 1440, 1504, 1155, 1730 (C=O stretch), 1607.