Supplementary Material (Revised Manuscript)

PMO[KIT-5]-n: Synthesis of highly ordered three-dimensional periodic mesoporous organosilicas with Fm3m symmetry

Yucang Liang,^a Marianne Hanzlik^b and Reiner Anwander^{*a}

^aAnorganisch-chemisches Institut and ^bInstitut für Technische Chemie, Technische Universität München, D-85747 Garching, Lichtenbergstraße 4, Germany. Fax: 49 89 28914374; Tel: 49 89 289 13096; E-mail: reiner.anwander@ch.tum.de

This submission was created using the RSC ChemComm Template (DO NOT DELETE THIS TEXT) (LINE INCLUDED FOR SPACING ONLY - DO NOT DELETE THIS TEXT)

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See http://www.rsc.org/suppdata/cc/b0/b00000a/

Experimental

General

1,2-bis(triethoxysilyl)ethane (BTEE) and hexadecyl-trimethylammonium bromide (C₁₆TABr) from Aldrich were used as the organosilica precursor and as an SDA, respectively. NaOH was obtained from Merck-Schuchardt. These reagents were used as received without further Divalent surfactants N-(3-trimethylammoniumpropyl)-hexadecylammoniumpurification. $[CH_3(CH_2)_{15}NMe_2(CH_2)_3NMe_3]^{2+}2Br$ dibromide, (C_{16-3-1}) and and N-(3trimethylammoniumpropyl)-octadecylammoniumdibromide, and [CH₃(CH₂)₁₇NMe₂- $(CH_2)_3NMe_3]^{2+}2Br^ (C_{18-3-1})$ were synthesized according to the literature by reacting hexadecyldimethylamine or octadecyldimethylamine with (3-bromopropyl)trimethylammonium bromide, respectively (see ref. 19).

Syntheses of mesoporous organosilicas

Synthesis of Material 4 (PMO[KIT-5]-4)

A mixture of C_{16-3-1} (2.45 g) and NaOH (0.73 g) in 55 g warm deionized water was stirred to form a clear solution. Then, BTEE (2.82 g) was added and the stirring was continued for 24 h at ambient temperature. Thus obtained clear solution was heated at 95°C for 7 h upon which a white precipitate formed. The suspension was transferred into a polypropylene bottle and aged at 80 °C for 24 h without stirring. The final molar composition of the gel was 1 BTEE : 0.60 C₁₆₋₃₋₁ : 2.35 NaOH : 396 H₂O. The warm solid product was recovered by suction filtration without washing and dried at ambient temperature.

The synthesis of materials **2**, **3**, **5-8** was similar to that of material **4**, taking into account the reaction details given in Table 2.

Surfactant removal

For all of the as-synthesized materials **1–8**, the surfactant molecules were removed by solvent extraction using a Soxhlet apparatus. In a typical extraction process, 1.0 g of an as-synthesized mesoporous organosilica material was stirred in a solvent mixture of 150 ml ethanol and 4 ml 37% hydrochloride acid for 6 h at 60 ~ 70 °C. The final product was further extracted into a hydrochloride acidified ethanol solution for 24 h by using a Soxhlet apparatus.

Characterization

Powder X-ray diffraction (PXRD) patterns were recorded on a Philips X'pert PRO instrument in the step/scan mode (step width: 0.00856, accumulation time: 54.61 s/step, range (2 θ): 0.51–9.997°) using monochromatic C-K_{α} radiation ($\lambda = 0.15418$ nm). Scanning electron microscopy (SEM) images were recorded on a JEOL 840A microscope operated at an accelerating voltage of 10-20 kV. Transmission electron micrographs (TEM) were obtained using a JEOL JEM2010 operated at 120 kV.

¹³C and ²⁹Si NMR spectra were obtained at room temperature on a Bruker AV300 instrument in a magnetic field of 7.04 T (the resonance frequencies were 300.13, 75.46, and 59.63 MHz), using 4 mm (¹H and ¹³C) and 7 mm (²⁹Si) standard MAS probes. The ¹³C spectra were recorded using cross polarization and proton decoupling and referenced to adamantane (¹H: 1.76 and 1.87 ppm; ¹³C 28.46 and 37.85 ppm to adamantane). The following conditions were used in the measurements: ¹³C, pulse repetition 10.0 s, $\pi/2$ pulse, spinning speed 7 kHz. The ²⁹Si NMR spectra were obtained by the application of single-pulse excitation with high-power proton decoupling at spinning speed of 7 kHz. The spectra were referenced to Si[Si(CH₃)₃]₄ (²⁹Si: δ 9.8 ppm). Nitrogen adsorption–desorption isotherms were recorded on an ASAP 2020 volumetric adsorption apparatus (Micromeritics) at 77.4 K for relative pressures from 10⁻² to 0.99 [$a_m(N_2, 77 K)$ =0.162 nm²]. Prior to analysis the samples were outgassed in the degas port of the adsorption analyzer at 523 K for at least 4 h. The BET specific surface area was obtained from the nitrogen adsorption and esorption branches of the isotherm using the Kelvin

equation and *Barrett–Joyner–Halenda* (BJH) method. Herein, we made use of this method to determine the pore diameter of mesoporous organosilicas.

S1. Scanning electron microscopy image of material 1.

S2. ¹³C CP MAS NMR spectrum (top) and ²⁹Si MAS NMR spectrum (bottom) for material **1**.

S3(a). Powder x-ray diffraction pattern for material **3**. It was prepared by using hexadecyltrimethylammonium bromide ($C_{16}TABr$) as an SDA under basic conditions. The molar ratio was 1 BTEE : 0.60 C_{16-3-1} : 2.35 NaOH : 396 H₂O. Aging temperature and aging time were 95 °C and 24 h, respectively. This material displays a cubic structure with Fm3m space group.

S3(b). N₂ adsorption and desorption isotherm for material **3**. Material **3** clearly indicates a type IV isotherm with H2 hysteresis loop. The inset shows the pore size distribution (PSD) calculated by the BJH method. A narrow PSD is observed. BET surface area: 670 m² g⁻¹, pore size: 2.9 nm, pore volume: 0.61 cm³ g⁻¹.

S4. TEM images of solvent-extracted material **4**. (A) PMO[KIT-5]-**4** particle viewed from [100] direction. The inset shows the electron diffraction pattern (a) and the respective Fourier diffractogram (b); (B) PMO[KIT-5]-**4** particle viewed from [110] direction. The inset shows the electron diffraction pattern (a) and the respective Fourier diffractogram (b); (C) PMO[KIT-5]-**4** particle viewed from [011] direction. The inset shows the electron diffraction pattern (a) and the respective Fourier diffractogram (b); (D) PMO[KIT-5]-**5** particle viewed along [100] direction. The inset shows the electron diffraction pattern (a) and the respective Fourier diffractogram (b); (D) PMO[KIT-5]-**5** particle viewed along [100] direction. The inset shows the electron diffraction pattern (a) and the respective Fourier diffractogram (b).

S5(a). Powder x-ray diffraction pattern for material **6**. It was prepared by using hexadecyltrimethylammonium bromide (C_{16} TABr) as an SDA under basic conditions. The molar ratio was 1 BTEE : 0.45 C_{16-3-1} : 2.35 NaOH : 396 H₂O. Aging temperature and aging time were 95 °C and 72 h, respectively. This material displays a hexagonal structure with P6mm space group.

S5(b). N₂ adsorption and desorption isotherm for material **6**. Material **6** clearly indicates a type IV isotherm with H2 hysteresis loop. The inset shows the pore size distribution (PSD) calculated by the BJH method. A narrow PSD is observed. BET surface area: $600 \text{ m}^2 \text{ g}^{-1}$, pore size: 2.9 nm, pore volume: 0.54 cm³ g⁻¹.

S6(a). Powder x-ray diffraction pattern for material **7**. It was prepared by using hexadecyltrimethylammonium bromide ($C_{16}TABr$) as an SDA under basic conditions. The molar ratio was 1 BTEE : 0.60 $C_{16}TABr$: 2.35 NaOH : 396 H₂O. Aging temperature and aging time were 80 °C and 24 h, respectively. This material displays a hexagonal structure with P6mm space group.

S6(b). N₂ adsorption and desorption isotherm for material **7**. Material **7** clearly indicates a type IV isotherm without hysteresis loop. The inset shows the pore size distribution (PSD) calculated by the BJH method. A narrow PSD is observed. BET surface area is 750 m² g⁻¹, pore size is 2.6 nm (adsorption branch), and pore volume is 0.57 cm³ g⁻¹.

S7. PXRD pattern for material $\mathbf{8}(top)$; N₂ adsorption and desorption isotherm for material $\mathbf{8}$ (bottom). Material $\mathbf{8}$ clearly indicates a type IV isotherm with hysteresis loop. The inset shows the pore size distribution (PSD) calculated by the BJH method. A narrow PSD is observed.