Novel formation and use of a Nicholas carbocation in the synthesis of highly substituted furan ring systems

Steven D. R. Christie, Ryan Davoile, Mark R. J. Elsegood, Ross Fryatt, Raymond C. F. Jones and Gareth J. Prichard Dept. of Chemistry, Loughborough University, Loughborough, UK LE11 3TU

General information

All reactions were carried out in one of the following solvents which were dried and purified, or purchased in the following procedures.

Dichloromethane	For general use CH_2Cl_2 was distilled over boiling stones or CaH_2
	for anhydrous reactions.
Dimethylsulfide	Purchased from Aldrich (99+%) and used without further
	purification.
<i>n</i> -Hexane	Purchased from Fischer Scientific (99+%), used without
	purification for general use.
Light petroleum	Distilled over CaCl ₂ for general use, collecting the fraction
	distilling below 60°C.
$Co_2(CO)_8$ from Strem	(stabilised by 1-5% hexane). used without any further purification.

Anhydrous reactions were extensively flame-dried under an atmosphere of nitrogen.

All metal carbonyl complexes were stored under a nitrogen atmosphere and kept at -18°C in a freezer.

High resolution mass spectroscopy was carried out on a Jeol SX 102 machine, used for both electron ionisation (EI) and fast atom bombardment (FAB) ionisation techniques. For FAB spectroscopy a matrix of 1,3-nitrobenzylalcohol was used to dissolve the compounds under investigation, prior to ionisation. Nuclear magnetic resonance spectroscopy was acquired using either a Bruker AC 250 or Bruker DPX 400 instrument. The spectra were calibrated where possible to the signals of tetramethylsilane or the small quantity of CHCl₃ present in CDCl₃, typically used as the standard solvent for these experiments. Where possible coupling constants (*J*) are shown denoting there multiplicity as a singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) or broad signal (br) etc. The size of the coupling constants are given in Hertz (Hz). Elemental analysis was carried out using a Perkin Elmer CHN 2400 elemental analyser. Fourier transform Infra Red spectroscopy was recorded using a Paragon 1000 Perkin Elmer FT-IR spectrometer in the range of 3500-600cm⁻¹ following a Stuart Scientific SMP3 instrument.

Flash silica column chromatography was used as a standard purification procedure using Fluka Kiesel gel 60, 0.04-0.063 mm particle size silica. Thin layer chromatography was used where possible as a standard procedure for monitoring the course and rate of a given

reaction. TLC plates used were Merck aluminium backed sheets with Kiesel gel 60 F_{254} silica coating.

2-Ethenylcyclopropane-1,1-dicarboxylic acid dimethyl ester¹

To a stirred solution of sodium methoxide, prepared from sodium (1.15 g, 50 mmol) and methanol (20 mL), was added dimethyl malonate (5.89 mL, 51.5 mmol) followed by a solution of (E)-1,4-dibromobutene (5.35 g, 25 mmol) in methanol (20 mL). The reaction mixture was refluxed for 2.5 h and then cooled to ambient temperature. The white precipitate was filtered (if present) and the filtrate reduced in vacuo to leave an oily residue, which was partitioned between diethyl ether (30 mL) and distilled water (30 mL). The diethyl ether layer was further washed with distilled water (2 x 30 mL), before drying over MgSO₄, filtering and concentrating in vacuo to afford a pale yellow oil, which was purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the *title compound* as a colourless oil (6.71 g, 90%) (Found: M^+ , 184.0738. C₉H₁₂O₄ requires M, 184.0736); v_{max} (film)/cm⁻¹ 2955 (sp³ C-H), 1730 (C=O); δ_H (400 MHz; CDCl₃) 1.58 (1H, dd, J 5, 9 Hz, CCHH), 1.72 (1H, dd, J 5, 7.5 Hz, CCHH), 2.57-2.59 (1H, m, CH₂CHC), 3.74 (6H, s, (CO₂CH₃)₂), 5.13 (1H, d, J 10.5 Hz, CHC*H*H), 5.27 (1H, d, J 17.0 Hz, CHCH*H*), 5.41 (1H, m, CCHC*H*CH₂); δ_c (100 MHz; CDCl₃) 20.9 (CCH₂), 31.8 (CCHCH), 36.1 (CCH), 52.9, 53.0 (OCH₃), 119.0 (CCHCHCH₂), 133.3 (CHCHCH₂), 168.1, 170.3 (CO₂CH₃); *m/z* 184 (M⁺, 15%), 152 (67), 124 (64), 93 (50), 71 (66)

2-Formyl-cyclopropane-1,1-dicarboxylic acid dimethyl ester²

2-Ethenylcyclopropane-1,1-dicarboxylic acid dimethyl ester (4.3 g, 186.2 mmol) in DCM (35 mL) was added to a flame-dried 3-neck flask fitted with a stopper, cone adapter and gas inlet. Oxygen was bubbled into the reaction mixture for 15 min while cooling to - 78°C. Ozone was then generated and bubbled through the reaction mixture at -78°C until a pale blue colour appeared, at which point oxygen was allowed to bubble through the reaction mixture and dimethylsulfide (10 mL) added, stirring for 12.0 h at room temperature. The reaction mixture was then concentrated *in vacuo* and the crude product partitioned between DCM (100 mL) and water (35 mL), washing the DCM fraction with water (2 x 35 mL) before drying, filtering and reducing *in vacuo* to give the *title compound* as a colourless oil (4.02 g, 91%); v_{max} (film)/cm⁻¹ 2958 (sp³ C-H), 1735, 1719 (C=O); δ_{H} (250 MHz; CDCl₃) 1.82 (1H, dd, *J* 5, 9 Hz, CHCH*H*), 2.08 (1H, dd, *J* 5, 7 Hz, CHC*H*H), 2.74-2.78 (1H, m, CH₂*CH*), 3.77 (6H, s, C(CO₂CH₃)₂), 9.36 (1H, d, *J* 4 Hz, CHO); δ_{c} (100 MHz; CDCl₃) 20.0 (CHCH₂), 35.1 (*C*HCH₂), 37.9 (*C*CHCH₂), 53.6, 53.7 (OCH₃), 166.7, 168.7 (C(*C*O₂CH₃)₂), 196.7 (*C*HO).

Dimethyl-1-diazo-2-oxopropylphosphonate³

To a cold suspension (0-5°C) of NaH (1.150 g, 28.9 mmol) in benzene (50 mL) and THF (8 mL) was added dimethyl 2-oxopropylphosphonate (4.4 g, 26.30 mmol) in benzene (20 mL) and the suspension stirred for 45 min. Tosyl azide (5.70 g, 28.90 mmol) in benzene (10 mL) was added and the reaction mixture stirred for 2 h, whilst warming to room temperature. The mixture was then filtered on a pad of celite and concentrated *in vacuo*, purifying by trituration of the two oils, collecting the *title compound* as a red/orange liquid (5.0 g, 96%); v_{max} (film)/cm⁻¹ 2125 (C=N₂), 1670, 1664, 1654, 1648 (C=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 2.28 (3H, s, CCH₃), 3.85, 3.88 (3H, s, OCH₃); $\delta_{\rm c}$ (100 MHz; CDCl₃) 27.4 (CCH₃), 53.9, 54.0 (OCH₃), 190.2, 190.3 (C=O, C=N).

2-Ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester⁴

2-Formylcyclopropane-1,1-dicarboxylic acid dimethyl ester (4.4 g, 23.6 mmol) in dry methanol (35 mL) was placed under a nitrogen atmosphere and dimethyl-1-diazo-2-oxopropylphosphonate (9.5 g, 47.2 mmol) was added, followed by K_2CO_3 (6.5 g, 47.20 mmol) The reaction mixture was stirred for 16 h at ambient temperature and then partitioned between diethyl ether (30 mL) and saturated NaHCO₃ (30 mL). The diethyl ether layer was further washed with distilled water (2 x 30 mL), before drying over MgSO₄ and concentrating *in vacuo* to afford a pale yellow oil, which was purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the *title compound* as a colourless oil (2.6 g, 60%) (Found: M^+ , 182.0576. C₉H₁₀O₄ requires

M, 182.0579); v_{max} (film)/cm⁻¹ 2957 (sp³ C-H), 2124 (C=C), 1736 (C=O); δ_{H} (250 MHz; CDCl₃) 1.58 (1H, dd, *J* 4.5, 9 Hz, CHCH*H*), 1.85 (1H, dd, *J* 4.5, 7.5 Hz, CHC*H*H), 1.96 (1H, d, *J* 2 Hz, CH₂C*H*), 2.46 (1H, ddd, *J* 2, 7.5, 9.5 Hz, CHCC*H*), 3.74, 3.80 (3H, s, OC*H*₃); δ_{c} (100 MHz; CDCl₃) 22.3 (CHCH₂), 24.2 (CHCH₂), 36.2 (CCHCH₂), 53.3, 53.5 (OCH₃), 69.1 (CHCCH), 80.0 (CHCCH), 167.1, 169.3 (CO₂CH₃); *m/z* 185 (M⁺, 7%), 150 (16), 85 (44), 59 (42), 43 (100).

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester

<u>(1)</u>

2-Ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.58 g, 3.2 mmol) was added to a RBF and placed under a nitrogen atmosphere, before dissolving in DCM (25 mL). Cobalt octacarbonyl (1.2 g, 3.5 mmol) was added and the reaction mixture stirred for 1.0 h. The reaction mixture was then filtered on a pad of celite and silica, before concentration *in vacuo* and purification of the residue by flash silica chromatography eluting in petroleum ether-diethyl ether (10:1 v/v) to yield the *title complex* as a deep red solid (1.55 g, 85%) (Found: C, 38.3; H, 2.1%; C₁₅H₁₀O₁₀Co₂ requires C, 38.5; H, 2.2%; Found: M⁺-2CO, 411.9036. C₁₃H₁₀O₈Co₂ (M-2CO) requires, 411.9040); v_{max} (film)/cm⁻¹ 2094, 2053, 2020 (C=O), 1736 (C=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 1.77 (1H, dd, *J* 4.5, 7.5 Hz, CHCH*H*), 1.90 (1H, dd, *J* 4.5, 9 Hz, CHC*H*H), 3.34 (1H, ddd, *J* 1, 7.5, 9 Hz, CH₂C*H*), 3.77, 3.78 (6H, 2 x s, 2 x OC*H*₃), 5.68 (1H, d, *J* 1 Hz, CHCC*H*); $\delta_{\rm c}$ (100 MHz; CDCl₃) 27.0 (CHCH₂), 31.6 (CHCH₂), 41.5 (CCH₂), 53.2, 53.4 (OCH₃), 69.2 (CH₂CH), 90.9 (CHCCH), 167.6, 169.5 (CO₂CH₃), 199.5 (Co(CO)₃); *m/z* 412 (M⁺-2CO, 9%), 384 (24), 356 (100), 328 (63), 300 (42).

Dicobalt hexacarbonyl-(3-methoxycarbonyltetrahydrofuran-2-on-5-yl)-ethyne

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.075 g, 0.15 mmol) was added to a flame-dried RBF placed under an atmosphere of nitrogen and dissolved in dry DCM (10 mL). After cooling to 0°C, BF₃·OEt₂ (0.06 mL, 0.46 mmol) was added and the reaction mixture stirred for 1.0 h. The resulting mixture was filtered through a pad of celite and silica, then concentrated in vacuo and the residue purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the two inseparable *title complex* diastereoisomers as a deep red oil (0.043 g, 59%, 1:1 d.r.) (Found: MH⁺, 454.8862. $C_{14}H_8O_{10}Co_2$ requires MH, 454.8860); v_{max} (film)/cm⁻¹ 2100, 2060, 2020 (C=O), 1736 (C=O); $\delta_{\rm H}$ (400 MHz; CDCl₃) 2.24-2.31 (1H, m, CHCHH), 2.50-2.58 (1H, m, CHCHH), 2.91-2.98 (1H, m, CHCHH), 3.07-3.13 (1H, m, CHCHH), 3.74-3.78 (2H, m, 2 x CH₂CH), 3.84, 3.84 (2 x 3H, s, OCH₃), 5.63 (1H, ddd, J 1, 6.5, 9 Hz, OCHCH₂), 5.80-5.83 (1H, m, OCHCH₂), 6.14 (1H, d, J 1 Hz, CCH), 6.16 (1H, d, J 1 Hz, CCH); δ_c (100 MHz; CDCl₃) 34.6, 34.7 (CHCH₂), 46.9, 47.5 (CHCH₂), 53.2, 53.4 (OCH₃), 72.1, 72.3 (CHCCH), 79.0, 80.0 (OCHCH₂), 90.3, 90.8 (CHCCH), 167.7, 167.9 (OCO), 170.4 (CO₂CH₃), 198.7 (Co(CO)₃); *m/z* 455 (MH⁺, 20%), 399 (45), 371 (67), 343 (52).

Dicobalt hexacarbonyl-5-ethynyl-2-phenyltetrahydrofuran-3,3-dicarboxylic acid

dimethyl ester (2a)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.045 g, 0.09 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (8 mL). Benzaldehyde (0.02 mL, 0.19 mmol) and BF₃·OEt₂ (0.04 mL, 0.28 mmol) were added and the reaction mixture stirred for 1.0 h. The resulting mixture was filtered through a pad of celite and silica, then concentrated *in vacuo*, and the residue purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the two separable *title complex* diastereoisomers as deep red oils ((i) 0.019 g, (ii) 0.019 g, 68%, 1:1 d.r.), (i) First eluting diastereoisomer (Found: M^+ -2CO, 517.9454. C₂₀H₁₆O₉Co₂ (M-2CO) requires, 517.9458); v_{max} (film)/cm⁻¹ 2094, 2054, 2017 (C=O), 1739, 1734, 1730 (C=O); δ_H (250 MHz; CDCl₃) 2.25 (1H, dd, J 7, 13 Hz, CHCHH), 3.18 (3H, s, OCH₃), 3.34 (1H, dd, J 7, 13 Hz, CHCHH), 3.78 (3H, s, OCH₃), 5.76 (1H, app dt, J 1, 7 Hz, CCHCH₂), 5.81 (1H, s, OCHC), 6.10 (1H, d, J 1 Hz, CHCCH), 7.25-7.35 (3H, m, ArCH), 7.43-7.46 (2H, m, ArCH); δ_c (100 MHz; CDCl₃) 43.5 (CHCH₂C), 52.7, 53.3 (OCH₃), 66.7 (CHCH₂C), 73.1 (CHCCH), 79.5 (OCHCH₂), 83.9 (OCHC), 95.5 (CCH), 127.0, 128.3, 128.6 (ArCH), 137.8 (ArC), 169.6, 170.5 (CO₂CH₃), 199.8 (Co(CO)₃); *m/z* 518 (M⁺-2CO, 25%), 490 (35), 462 (100), 434 (17), 406 (33). (ii) Second eluting diastereoisomer (Found: M⁺-2CO, 517.9454. C₂₀H₁₆O₉Co₂ (M-2CO) requires, 517.9458); v_{max} (film)/cm⁻¹ 2094, 2052, 2017 (C=O), 1739, 1734, 1730 (C=O); δ_H (400 MHz; CDCl₃) 2.66 (1H, dd, J 6.5, 13 Hz, CHCHH), 2.83 (1H, dd, J 10, 13 Hz, CHCHH), 3.02, 3.75 (6H, 2 x s, 2 x OCH₃), 5.00 (1H, ddd, J 1, 6.5, 10 Hz, OCHCH₂), 5.67 (1H, s, OCHC), 6.06 (1H, d, J 1 Hz, CHCCH), 7.18-7.24 (3H, m, ArCH), 7.37-7.40 (2H, m, ArCH); δ_c (100 MHz; CDCl₃) 41.8 (CHCH₂C), 51.3, 52.0

(OCH₃), 65.0 (CHCH₂C), 71.0 (CHCCH), 77.0 (OCHCH₂), 83.4 (OCHC), 91.1 (CCH), 125.8, 126.8, 127.1 (ArCH), 135.8 (ArC), 168.0, 170.2 (CO₂CH₃), 199.3 (Co(CO)₃); *m/z* 518 (M⁺-2CO, 11%), 490 (96), 462 (40), 434 (85), 406 (100).

<u>Dicobalt hexacarbonyl-5-ethynyl-2-(4-nitrophenyl)tetrahydrofuran-3,3-dicarboxylic</u> acid dimethyl ester (2c)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.045 g, 0.09 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (8 mL). 4-Nitrobenzaldehyde (0.028 g, 0.18 mmol) and BF₃·OEt₂ (0.04 mL, 0.28 mmol) were added and the reaction mixture stirred for 1.0 h at reflux. The resulting mixture was filtered through a pad of celite and silica, then concentrated *in vacuo*, and the residue purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the two separable *title complex* diastereoisomers as a deep red solid and a deep red oil ((i) 0.021 g, (ii) 0.021 g, 71%, 1:1 d.r.), (i) First eluting diastereoisomer: m.pt. 124-126°C; (Found: C, 42.6; H, 2.3; N, 2.1%; C₂₂H₁₅NO₁₃Co₂ requires C, 42.7; H, 2.4; N, 2.3%; Found: M⁺-2CO, 562.9306. C₂₀H₁₅NO₁₁Co₂ (M-2CO) requires, 562.9309); v_{max} (film)/cm⁻¹ 2953 (sp³ C-H), 2095, 2057, 2017 (C=O), 1740, 1734, 1730 (C=O); δ_H (250 MHz; CDCl₃) 2.27 (1H, dd, J 7.5, 13 Hz, CHCHH), 3.23 (3H, s, OCH₃), 3.34 (1H, dd, J 7.5, 13 Hz, CHCHH), 3.81 (3H, s, OCH₃), 5.78 (1H, app dt, J 1, 7.5 Hz, CCHCH₂), 5.85 (1H, s, OCHC), 6.10 (1H, d, J 1 Hz, CHCCH), 7.69 (2H, d, J 8.5 Hz, ArCH), 8.18 (2H, d, J 8.5 Hz, ArCH); δ_c (100 MHz; CDCl₃) 43.6 (CHCH₂C), 52.9, 53.6 (OCH₃), 66.8 (CHCH₂C), 72.8 (CHCCH), 79.9 (OCHCH₂), 82.8 (OCHC), 94.7 (CHCCH), 123.5, 128.0 (ArCH), 145.2, 148.1 (ArC), 169.0, 170.1 (CO_2CH_3), 199.6 ($Co(CO)_3$); m/z 563 (M^+ , 25%), 535 (24), 507 (67), 451

(13). (ii) Second eluting diastereoisomer (Found: M⁺-2CO, 562.9320. C₂₀H₁₅NO₁₁Co₂ (M-2CO) requires, 562.9309); v_{max} (film)/cm⁻¹ 2095, 2052, 2017 (C=O), 1734, 1706, 1700 (C=O), 1521, 1346 (NO₂); δ_{H} (400 MHz; CDCl₃) 2.82 (1H, dd, *J* 7, 13.5 Hz, CHCH*H*), 2.88 (1H, dd, *J* 10, 13.5 Hz, CHC*H*H), 3.16, 3.86 (6H, 2 x s, 2 x OC*H*₃), 5.13 (1H, ddd, *J* 1, 7, 10 Hz, CC*H*CH₂), 5.78 (1H, s, OC*H*C), 6.16 (1H, d, *J* 1 Hz, CHCC*H*), 7.69 (2H, d, *J* 9 Hz, ArC*H*), 8.17 (2H, d, *J* 9 Hz, ArC*H*); δ_{c} (100 MHz; CDCl₃) 42.7 (CHCH₂C), 52.4, 53.2 (OCH₃), 66.1 (CHCH₂C), 72.0 (CHCCH), 78.6 (OCHCH₂), 83.2 (OCHC), 91.4 (CHCCH), 123.0, 127.8 (2C, s, ArCH), 147.7, 151.1 (ArC), 168.6, 170.8 (CO₂CH₃), 199.3 (Co(CO)₃); *m/z* 563 (M⁺-2CO, 10%), 535 (15), 507 (100), 451 (17).

Dicobalt hexacarbonyl-5-ethynyl-2-(2-nitrophenyl)tetrahydrofuran-3,3-dicarboxylic acid dimethyl ester (2d)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.050 g, 0.10 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (8 mL). 2-Nitrobenzaldehyde (0.032 g, 0.20 mmol) and BF₃·OEt₂ (0.04 mL, 0.31 mmol) were added and the reaction mixture stirred for 1.0 h at reflux. The resulting mixture was filtered through a pad of celite and silica, then concentrated *in vacuo*, and the residue purified by flash silica chromatography eluting in *n*-hexane-diethyl ether (5:1 v/v) to yield the two separable *title complex* diastereoisomers as deep red oils ((i) 0.016 g, (ii) 0.008 g, 30%, 2:1 d.r.), (i) First eluting major diastereoisomer (Found: M⁺-CO, 590.9244. C₂₂H₁₅NO₁₂Co₂ (M-CO) requires, 590.9258); v_{max} (film)/cm⁻¹ 2954 (sp³ C-H), 2096, 2054, 2025 (C=O), 1734 (C=O), 1534, 1347 (NO₂); $\delta_{\rm H}$ (400 MHz; CDCl₃) 2.67 (1H, dd, *J* 5.5, 13 Hz, CHCH*H*), 2.91 (1H, dd, *J* 11, 13 Hz, CHC*H*H), 3.15, 3.86 (6H, 2 x s, 2 x OC*H*₃), 5.20 (1H, ddd, *J* 1, 5.5, 11 Hz,

Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2004

CCHCH₂), 6.16 (1H, d, *J* 0.8 Hz, CHCC*H*), 6.44 (1H, s, OCHC), 7.45 (1H, m, ArC*H*), 7.58 (1H, m, ArC*H*), 7.75-7.83 (1H, m, ArC*H*), 7.94-7.97 (1H, m, ArC*H*); δ_c (100 MHz; CDCl₃) 43.9 (CHCH₂C), 52.4, 53.3 (OCH₃), 65.8 (CHCH₂C), 72.1 (CHCCH), 78.4 (OCHCH₂), 79.6 (OCHC), 91.1 (CHCCH), 124.3, 128.97, 129.01, 132.7 (ArCH), 148.5, 149.6 (ArC), 168.5, 170.8 (CO₂CH₃), 199.2 (Co(CO)₃); *m/z* 591 (M⁺-CO, 2%), 563 (3), 535 (3), 507 (2), 451 (75). (ii) Second eluting minor diastereoisomer (Found: M⁺-CO, 590.9247. C₂₀H₁₅NO₁₂Co₂ (M-CO) requires, 590.9258); v_{max} (film)/cm⁻¹ 2095, 2054, 2017 (C=O), 1734, 1730 (C=O), 1528, 1346 (NO₂); $\delta_{\rm H}$ (400 MHz; CDCl₃) 2.31 (1H, dd, *J* 7, 13 Hz, CHCH*H*), 3.27 (3H, s, OC*H*₃), 3.35 (1H, dd, *J* 7, 13 Hz, CHC*H*H), 3.76 (3H, s, OC*H*₃), 5.72 (1H, app dt, *J* 1, 7 Hz, CC*H*CH₂), 6.10 (1H, d, *J* 1 Hz, CHCC*H*), 6.48 (1H, s, OC*H*C), 7.42-7.46 (1H, m, ArC*H*), 7.57 (1H, m, ArC*H*), 7.66-7.68 (1H, m, ArC*H*), 7.82-7.84 (1H, m, ArC*H*); δ_c (100 MHz; CDCl₃) 43.4 (CHCH₂C), 52.5, 53.1 (OCH₃), 66.7 (CHCH₂C), 72.4 (CHCCH), 78.7 (OCHCH₂), 79.7 (OCHC), not seen (CHCCH), 124.4, 128.6, 129.0, 132.1 (ArCH), 132.2, 149.2 (ArC), 168.7, 169.2 (CO₂CH₃), 199.2 (Co(CO)₃); *m/z* 619 (M⁺, 8%), 591 (21), 563 (45), 535 (23) 451 (61).

Dicobalt hexacarbonyl-5-ethynyl-2-(4-fluorophenyl)tetrahydrofuran-3,3dicarboxylic acid dimethyl ester (2e)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.025 g, 0.04 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (5 mL). 4-Fluorobenzaldehyde (0.01 mL, 0.08 mmol) and $BF_3 \cdot OEt_2$ (0.02 mL, 0.12 mmol) were added and the reaction mixture stirred for 1.0 h at reflux. The resulting mixture was filtered through a pad of celite and silica, then concentrated *in vacuo*, and the residue purified by flash silica chromatography eluting in

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

petroleum ether-diethyl ether (5:1 v/v) to yield the two separable *title complex* diastereoisomers as deep red oils ((i) 0.009, (ii) 0.016 g, 81%, 1:1.7 d.r.), (i) First eluting minor diastereoisomer (Found: M⁺-2CO, 535.9374. C₂₀H₁₅FO₉Co₂ (M-2CO) requires, 535.9364); v_{max} (film)/cm⁻¹ 2095, 2055, 2023 (C=O), 1740, 1734, 1730 (C=O); δ_{H} (400 MHz; CDCl₃) 2.17 (1H, dd, J7, 13 Hz, CHCHH), 3.09 (3H, s, OCH₃), 3.25 (1H, dd, J7, 13 Hz, CHCHH), 3.71 (3H, s, OCH₃), 5.63 (1H, s, OCHC), 5.67 (1H, app dt, J 1, 7 Hz, CCHCH₂), 6.06 (1H, d, J 1 Hz, CHCCH), 6.89-6.95 (2H, m, ArCH), 7.36-7.39 (2H, m, ArCH); δc (100 MHz; CDCl₃) 43.0 (CHCH₂C), 52.4, 52.9 (OCH₃), 66.1 (CHCH₂C), 72.6 (CHCCH), 79.0 (OCHCH₂), 82.8 (OCHC), 94.9 (CHCCH), 114.8 (2C, d, ²J_{C-F} 21.0 Hz, ArCH), 128.3 (2C, d, ³J_{C-F} 9.0 Hz, ArCH), 133.0 (1C, d, ⁴J_{C-F} 3.0 Hz, ArC), 162.6 (1C, d, ${}^{1}J_{C-F}$ 245.0 Hz, ArC), 169.1, 170.0 (CO₂CH₃), 199.3 (Co(CO)₃); m/z 536 (M⁺-2CO, 14%), 508 (15), 480 (100), 452 (25), 452 (25), 424 (28), 365 (20). (ii) Second eluting major diastereoisomer (Found: M⁺-2CO, 535.9361. C₂₀H₁₅FO₉Co₂ (M-2CO) requires, 535.9364); v_{max} (film)/cm⁻¹ 2096, 2054, 2026 (C=O), 1734 (C=O); δ_{H} (400 MHz; CDCl₃) 2.67 (1H, dd, J 6.5, 13.5 Hz, CHCHH), 2.80 (1H, dd, J 10, 13.5 Hz, CHCHH), 3.16, 3.75 (6H, 2 x s, 2 x OCH₃), 4.99 (1H, ddd, J 1, 6.5, 10 Hz, OCHCH₂), 5.70 (1H, s, OCHC), 6.06 (1H, d, J 1 Hz, CHCCH), 6.89-6.95 (2H, m, ArCH), 7.36-7.39 (2H, m, ArCH); δ_c (100 MHz; CDCl₃) 42.7 (CHCH₂C), 52.3, 53.0 (OCH₃), 65.9 (CHCH₂C), 72.0 (CHCCH), 78.0 (OCHCH₂), 83.8 (OCHC), 91.9 (CHCCH), 114.7 (2C, d, ²J_{C-F} 21.0 Hz, Ar*C*H), 128.6 (2C, d, ³*J*_{*C*-*F*} 8.0 Hz, Ar*C*H), 132.6 (1C, d, ⁴*J*_{*C*-*F*} 3.0 Hz, Ar*C*), 162.6 (1C, d, ${}^{1}J_{C-F}$ 245.0 Hz, ArC), 169.0, 171.1 (CO₂CH₃), 199.3 (Co(CO)₃); m/z 536 (M⁺-2CO, 31%), 508 (45), 480 (100), 452 (16), 424 (20).

Dicobalt hexacarbonyl-5-ethynyl-2-(4-bromophenyl)tetrahydrofuran-3,3-

dicarboxylic acid dimethyl ester (2f)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.050 g, 0.10 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (8 mL). 4-Bromobenzaldehyde (0.038 g, 0.20 mmol) and BF₃OEt₂ (0.04 mL, 0.29 mmol) were added and the reaction mixture stirred for 1.0 h at reflux. The resulting mixture was filtered through a pad of celite and silica, then concentrated *in vacuo*, and the residue purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the two separable *title complex* diastereoisomers as a deep red oil (0.021 g, 0.021 g, 61%, 1:1 d.r.) (i) First eluting diastereoisomer (Found: M⁺-2CO, 595.8568, C₂₀H₁₅⁷⁹BrO₉Co₂ (M-2CO) requires, 595.8563); v_{max} (film)/cm⁻¹ 2094, 2053, 2017 (C=O), 1740, 1734, 1730 (C=O), 1072, 1037 (C-O); δ_H (400 MHz; CDCl₃) 2.23 (1H, dd, J 7, 13 Hz, CHCHH), 3.25 (3H, s, OCH₃), 3.31 (1H, dd, J 7, 13 Hz, CHCHH), 3.78 (3H, s, OCH₃), 5.71-5.75 (2H, m, OCHCH₂, OCHC), 6.09 (1H, d, J 1 Hz, CHCCH), 7.34 (2H, d, J 8 Hz, ArCH), 7.44 (2H, d, J 8 Hz, ArCH); δ_c (100 MHz; CDCl₃) 43.1 (CHCH₂C), 52.4, 52.9 (OCH₃), 66.1 (CHCH₂C), 72.5 (CHCCH), 79.1 (OCHCH₂), 82.9 (OCHC), 94.9 (CHCCH), 122.1 (ArC), 128.3, 131.0 (ArCH), 136.4 (ArC), 168.9, 169.9 (CO₂CH₃), 199.2 (Co(CO)₃); *m/z* 598 (M⁺-2CO (⁸¹Br), 22%), 595 (21), 569 (27), 567 (25), 541 (100), 539 (98), 485 (30), 483 (30). (ii) Second eluting diastereoisomer (Found: M⁺-2CO, 595.8550. C₂₀H₁₅⁷⁹BrO₉Co₂ (M-2CO) requires, 595.8563); v_{max} (film)/cm⁻¹ 2095, 2054, 2023 (C=O), 1740, 1734, 1730 (C=O), 1066, 1035 (C-O); δ_H (400 MHz; CDCl₃) 2.74 (1H, dd, J 6.5, 13 Hz, CHCHH), 2.86 (1H, dd, J 10, 13 Hz, CHCHH), 3.17, 3.83 (6H, 2 x s, 2 x OCH₃), 5.07 (1H, ddd, J 1, 6.5, 10 Hz, CCHCH₂), 5.67 (1H, s, OCHC), 6.12 (1H, d, J 1

Hz, CHCC*H*), 7.31 (2H, d, *J* 8.5 Hz, ArC*H*), 7.43 (2H, d, *J* 8.5 Hz, ArC*H*); δ_c (100 MHz; CDCl₃) 42.7 (CHCH₂C), 52.4, 53.1 (OCH₃), 65.9 (CHCH₂C), 72.0 (CHCCH), 78.2, (OCHCH₂), 83.8 (OCHC), 91.9 (CHCCH), 122.2 (ArC), 128.6, 131.0 (ArCH), 135.9 (ArC), 168.9, 171.0 (CO₂CH₃), 199.3 (Co(CO)₃); *m*/*z* 598 (M⁺-2CO (⁸¹Br), 5%), 569 (68), 567 (65), 513 (62), 511 (56), 485 (99), 483 (100).

Dicobalt hexacarbonyl-5-ethynyl-2-pentyltetrahydrofuran-3,3-dicarboxylic acid dimethyl ester (2g)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.060 g, 0.12 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (10 mL). Hexanal (0.03 mL, 0.25 mmol) and BF₃·OEt₂ (0.05 mL, 0.37 mmol) were added and the reaction mixture stirred for 1.0 h at reflux. The resulting mixture was filtered through a pad of celite and silica, then concentrated in *vacuo*, and the residue purified by flash silica chromatography eluting in petroleum etherdiethyl ether (5:1 v/v) to yield the two inseparable *title complex* diastereoisomers as a deep red oil (0.064 g, 83%, 1:1 d.r.) (Found: M⁺-2CO, 511.9938. C₁₉H₂₂O₉Co₂ (M-2CO) requires, 511.9928); v_{max} (film)/cm⁻¹ 2095, 2055, 2017 (C=O), 1740, 1734, 1730 (C=O); δ_H (400 MHz; CDCl₃) 0.84-0.88 (6H, m, 2 x CHCH₃), 1.26-1.36 (12H, m, 2 x CH₂(CH₂)₃CH₃), 1.52-1.62 (4H, m, 2 x CH₂(CH₂)₃), 2.08 (1H, dd, J 7, 13 Hz, CHCHH), 2.60 (1H, dd, J 10, 13 Hz, CHCHH), 2.72 (1H, dd, J 7, 13 Hz, CHCHH), 3.16 (1H, dd, J 7, 13 Hz, CHCHH), 3.74, 3.75, 3.78, 3.79 (12H, 4 x s, 4 x OCH₃), 4.45-4.50 (2H, m, 2 x OCHCH₂), 4.89 (1H, ddd, J 1, 7, 10 Hz, OCHC), 5.45 (1H, dt, J 1, 7 Hz, OCHC), 6.03 (1H, d, J 1 Hz, CHCCH), 6.05 (1H, d, J 1 Hz, CHCCH); δ_c (100 MHz; CDCl₃) 14.0 (2 x CH₂CH₃), 22.5 (2 x CH₂CH₃), 26.4, 26.5 (CH₂CH₂CH₃), 31.6, 31.65, 31.66, 31.8

(CHCH₂CH₂), 42.5, 43.0 (CHCH₂C), 52.4, 52.5, 52.8, 52.9 (OCH₃), 63.7, 64.0 (CHCH₂C), 71.6, 72.1 (CHCCH), 77.5, 78.1 (OCHCH₂), 82.4, 82.9 (OCHC), 93.7, 96.3 (CHCCH), 169.82, 169.84, 169.9, 171.1 (CO₂CH₃), 199.4 (Co(CO)₃); *m/z* 512 (M⁺-2CO, 17%), 584 (17), 456 (53).

Dicobalt hexacarbonyl-5-ethynyl-2-methyltetrahydrofuran-3,3-dicarboxylic acid dimethyl ester (2h)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.050 g, 0.10 mmol) was added to a flame-dried RBF, placed under an atmosphere of nitrogen and dissolved in dry DCM (10 mL). Acetaldehyde (0.30 mL, 0.20 mmol) and $BF_3 OEt_2$ (0.04 mL, 0.30 mmol) were added and the reaction mixture stirred for 1.0 h at reflux. The resulting mixture was filtered through a pad of celite and silica, then concentrated in vacuo, and the residue purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the two inseparable *title complex* diastereoisomers as a deep red oil (0.036 g, 65%, 1:1 d.r.) (Found: M⁺-2CO, 455.9306. C₁₅H₁₄O₉Co₂ (M-2CO) requires, 455.9302); v_{max} (film)/cm⁻¹ 2094, 2053, 2017 (C=O), 1740, 1734, 1730 (C=O); δ_H (250 MHz; CDCl₃) 1.27 (3H, d, J 6.5 Hz, CHCH₃), 1.31 (3H, d, J 6.5 Hz, CHCH₃), 2.12 (1H, dd, J 7, 13 Hz, CHCHH), 2.65 (1H, dd, J 9.5, 13 Hz, CHCHH), 2.74 (1H, dd, J7, 13 Hz, CHCHH), 3.17 (1H, dd, J7, 13 Hz, CHCHH), 3.758, 3.761, 3.79, 3.80 (12H, 4 x s, 4 x OCH₃), 4.64 (1H, q, J 6.5 Hz, OCHCH₃), 4.66 (1H, q, J 6.5 Hz, OCHCH₃), 4.93 (1H, ddd, J 1, 7, 9.5 Hz, CCHCH₂), 5.45 (1H, dt, J 1.0, 7 Hz, CCHCH₂), 6.05 (1H, d, J 1 Hz, CHCCH), 6.06 (1H, d, J 1.0 Hz, CHCCH); δ_c (100 MHz; CDCl₃) 16.3, 17.0 (CHCH₃), 42.1, 42.7 (CHCH₂), 52.6, 52.7, 52.8, 53.0 (OCH₃),

63.8, 64.0 (CHCH₂*C*), 72.0, 72.4 (CHCCH), 77.5, 77.8 (OCHCH₂), 78.1, 78.9 (OCHC), 93.5, 96.0 (CHCCH), 169.6, 169.69, 169.74, 171.1 (*C*O₂CH₃), 199.4 (Co(*C*O)₃); *m/z* 456 (M⁺-2CO, 100%), 428 (84), 400 (100), 372 (37), 344 (38).

Dicobalt hexacarbonyl-5-ethynyltetrahydrofuran-2,3,3-tricarboxylic acid 2-ethyl ester 3,3-dimethyl ester (2i)

Dicobalt hexacarbonyl-2-ethynylcyclopropane-1,1-dicarboxylic acid dimethyl ester (0.052 g, 0.11 mmol) was added to a flame-dried RBF under an atmosphere of nitrogen and dissolved in dry DCM (8 mL). Ethyl glyoxylate (0.04 mL, 0.21 mmol) and BF₃·OEt₂ (0.04 mL, 0.31 mmol) were added, the reaction mixture was heated to reflux and stirred for 1.0 h. The resulting mixture was filtered through a pad of celite and silica, then concentrated *in vacuo*, and the residue purified by flash silica chromatography eluting in petroleum ether-diethyl ether (5:1 v/v) to yield the two inseparable *title complex* diastereoisomers as a deep red oil (0.052 g, 85%, 1.6:1 d.r.) (Found: M⁺-2CO, 513.9366. C₁₇H₁₆O₁₁Co₂ (M-2CO) requires, 513.9357); v_{max} (film)/cm⁻¹ 2096, 2054, 2017 (C=O), 1751, 1740, 1734 (C=O); Assigned from combined spectrum (i) Major diastereoisomer δ_H (400 MHz; CDCl₃) 1.21 (3H, t, J 8.0 Hz, CH₂CH₃), 2.32 (1H, dd, J 7.5, 13 Hz, CHCHH), 3.24 (1H, dd, J 7.5, 13 Hz, CHCHH), 3.69, 3.75 (6H, 2 x s, 2 x OCH₃), 4.08-4.15 (2H, m, CH₂CH₃), 5.15 (1H, s, OCHC), 5.58 – 5.68 (1H, m, CCHCH₂), 6.07 (1H, d, J 1 Hz, CHCCH); δ_c (100 MHz; CDCl₃) 14.0 (CH₂CH₃), 42.2 (CHCH₂C), 53.3, 53.4 (OCH₃), 61.5 (CH₂CH₃), 64.6 (CHCH₂C), 72.7 (CHCCH), 79.8 (OCHCH₂), 81.4 (OCHC), 93.3 (CHCCH), 168.3, 169.2, 169.5 (CO₂R), 199.1 (Co(CO)₃); (ii) Minor diastereoisomer δ_H (400 MHz; CDCl₃) 1.20 (3H, t, J 7 Hz, CH₂CH₃), 2.67 (1H, dd, J 10,

13 Hz, CHCH*H*), 2.84 (1H, dd, *J* 6, 13 Hz, CHC*H*H), 3.66, 3.79, (6H, 2 x s, 2 x OC*H*₃), 4.08-4.15 (2H, m, OC*H*₂CH₃), 5.03 (1H, s, OC*H*C), 5.11 (1H, ddd, *J* 1, 6, 10 Hz, CC*H*CH₂), 6.07 (1H, d, *J* 1 Hz, CHCC*H*); δ_c (100 MHz; CDCl₃) 13.9 (CH₂CH₃), 41.4 (CH*C*H₂C), 53.1, 53.7 (OCH₃), 61.5 (*C*H₂CH₃), 64.6 (CHCH₂C), 72.4 (*C*HCCH), 80.0 (OCHCH₂), 81.3 (OCHC), 92.1 (CHCCH), 167.8, 169.1, 169.2 (*C*O₂R), 199.1 (Co(*C*O)₃); *m*/*z* 514 (M⁺-2CO, 10%), 486 (42), 458 (100), 430 (18), 402 (59).

- 1. J. Tsuji, I. Shimizu, Y. Ohashi, Tetrahedron Lett. 1985, 26, 3825-3828.
- 2. C. Chen, Y. Liao, Y.-Z. Huang, Tetrahedron, 1989, 45, 3011-3020.
- 3. P. Callant, L. D'Haenens, M. Vandewalle, Synth Commun, 1984, 14, 155.
- 4. This procedure is adapted from: S. Müller, B. Liepold, G.J. Roth, H.J. Bestmann, *Synlett*, 1996, 521-522.