A novel clean catalytic method for waste-free modification of

polysaccharides by oxidation

Svetlana L. Kachkarova-Sorokina, Pierre Gallezot and Alexander B. Sorokin*

Supplementary Information

Experimental

Materials. Potato native starch (gift from Raisio Chemicals, Finland) contained 80% amylose and 20% amylopectine on a dry basis and the moisture content was 16 wt%. Figure S1A gives a SEM image of native potato starch showing the presence of 5 – 50 μm granules. Starches from rice, wheat, corn and corn starch enriched with amylopectin were obtained from Sigma. Hydrogen peroxide (35 %) was purchased from Aldrich. Metal complexes of tetrasulfonatophthalocyanine (MPcS) were prepared by a modified Weber-Busch procedure (S1,S2). Tetracarboxyphthalocyanine of iron was prepared by following the procedure reported in (S3).

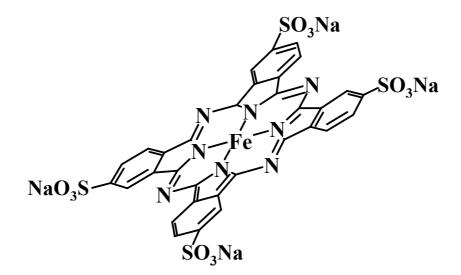
Methods. The carbonyl and carboxyl degrees of substitution were determined by Smith's method (*S4*) using Titrino SM 702 apparatus. The Fe contents in modified starch were measured using inductively coupled plasma-mass spectrometry method. Water contents of materials were determined by TGA.

References and Notes

- S1. J.H. Weber, D.H. Busch, *Inorg. Chem.* 4, 469 (1965).
- S2. A. Hadasch, A.B. Sorokin, A. Rabion, B. Meunier, New J. Chem., 22, 45 (1998).
- S3. H. Shirai, A. Maruyama, K. Kobayashi, N. Hojo, Macromol. Chem. 181, 575 (1980).
- S4. P. Parovuori, A. Hamunen, P. Forssell, K.Autio, K. Poutanen, *Starch/Stärke* 47, 19 (1995).

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2004

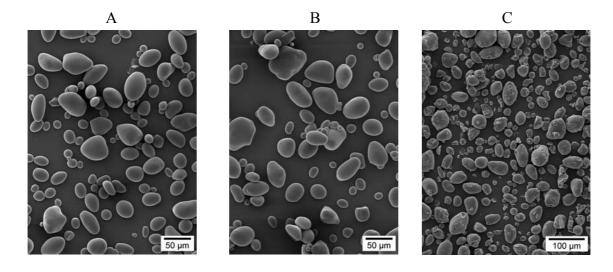
Table S1. Oxidation of starches from different sources by the dry method at 58°C.


Origin of the starch	Amylose %	Amylopectin %	Granule size μm	$T_{gelatin}$ $^{\circ}C$	COOH CO per 100 GU	
Potato	20	80	5 - 100	50-68	4.0	8.0
Corn	27	73	5 - 30	62-80	3.6	6.0
					3.65*	6.2*
Corn	0	100	5 - 30	63-72	3.1	6.1
					4.3*	5.85*
Rice	19	81	1 - 3	66-78	1.5	3.6
					2.9*	6.3*
Wheat	25	75	1 - 45	52-85	3.5	6.1

^{* - 70°}C, molar ratio catalyst : H_2O_2 : AGU = 1 : 1450 : 6500.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004


Fig. S1. Structure of iron tetrasulfonatophthalocyanine (one of four possible positional isomer is shown).

- # Supplementary Material (ESI) for Chemical Communications
- # This journal is © The Royal Society of Chemistry 2004

Figure S2. SEM pictures of native potato starch (A); oxidised potato starch having DS_{CO} =

2.84, $DS_{COOH} = 0.27$ (B) and oxidised potato starch having $DS_{CO} = 8.50$, $DS_{COOH} = 4.60$ (C).

