## Helical Coordination Polymers and Cyclic Dimers Formed From Heteroleptic Thioether-Dipyrrinato Copper(II) Complexes

Loi Do, Sara R. Halper, and Seth M. Cohen\*

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358

scohen@ucsd.edu

## **Electronic Supplementary Information**

\*Author to whom correspondence should be addressed. Telephone: (858) 822-5596. Fax: (858) 822-5598. E-mail: scohen@ucsd.edu.

## **Synthetic Procedures**

**General.** Unless otherwise noted, starting materials were obtained from commercial suppliers and used without further purification. Elemental analysis was performed at NuMega Resonance Labs, San Diego, California. <sup>1</sup>H/<sup>13</sup>C NMR spectra were recorded on a Varian FT-NMR spectrometer at the Department of Chemistry and Biochemistry, University of California, San Diego. Infrared spectra were collected on a Nicolet AVATAR 320 FT-IR instrument at the Department of Chemistry and Biochemistry, University of California, San Diego. UV-visible spectra were collected on a Perkin-Elmer Lambda 25 spectrophotometer.

**3-Methythiobenzaldehyde.** 3-Methythiobenzaldehyde was synthesized by a slightly modified literature procedure (M. Euerby and R. D. Waigh, *Synth. Commun.*, 1981, **11**, 849. N. Iqbal, C.-A. McEwen, and E. E. Knaus, *Drug Develop. Res.*, 2000, **51**, 177.). A Grignard reagent was prepared from 3-bromobenzaldehyde diethyl acetal (10 mL, 49 mmol) and crushed magnesium (~4 g) in dry THF (75 mL) under nitrogen. Once formation of the Grignard is complete (solution changes from a light yellow to a dark brown color), dimethyl disulfide (4.8 mL, 53 mmol) was added dropwise over ~30 min. The solution was refluxed for 3.5 h, cooled in an ice bath, and 20% NH<sub>4</sub>Cl was added slowly. A trap was used to neutralize the evolution of methanethiol during this process. Extraction with ether gave the acetal as a light brown oil (11 g). The acetal was dissolved in THF (100 mL) and ~2M H<sub>2</sub>SO<sub>4</sub> (150 mL), and the solution was stirred overnight. K<sub>2</sub>CO<sub>3</sub> was added to neutralize the solution and the mixture was extracted with ether and dried over Mg<sub>2</sub>SO<sub>4</sub>. Removal of Mg<sub>2</sub>SO<sub>4</sub> by vacuum filtration and evaporation of the filtrate to dryness gave a brown oil. Yield 54% (4 g). <sup>1</sup>H NMR (CDCl<sub>3</sub> 400 MHz, 25

°C): δ 2.50 (s, 1H), 7.40-7.68 (m, 4H), 9.93 (s, 1H). <sup>13</sup>C NMR (CDCl<sub>3</sub> 100 MHz, 25 °C): δ 15.6, 125.9, 126.6, 129.1, 131.9, 136.7, 140.3, 191.6. GC-EIMS: *m/z* 152.3 [M<sup>-</sup>]<sup>+</sup>.

**5-(3-Methylthiophenyl)dipyrromethane.** 3-Methylthiobenzaldehyde (300 mg, 1.97 mmol) was dissolved in neat pyrrole (13.6 mL, 0.197 mol). The solution was degassed with nitrogen for 10 min. Trifluoroacetic acid (15.2 μL, 0.197 mmol) was added and the solution was stirred for 1 h under a nitrogen atmosphere. The reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (50 mL), washed with 0.1 M NaOH (50 mL) and water (50 mL), followed by drying over Mg<sub>2</sub>SO<sub>4</sub>. The Mg<sub>2</sub>SO<sub>4</sub> was removed by vacuum filtration and the filtrate was evaporated to remove CH<sub>2</sub>Cl<sub>2</sub>. The remaining pyrrole was removed by vacuum distillation with gentle heating. The product was purified by column chromatography (SiO<sub>2</sub>; hexanes:CH<sub>2</sub>Cl<sub>2</sub>, 1:4) to afford a yellow oil. Yield: 76% (403 mg). <sup>1</sup>H NMR (CDCl<sub>3</sub> 300 MHz, 25 °C): δ 2.46 (s, 3H), 5.40 (s, 1H), 5.95 (bs, 2H), 6.20 (m, 2H), 6.67 (m, 2H), 7.00 (d, 1H, *J* = 7.8 Hz), 7.14-7.30 (m, 3H), 7.86 (bs, 2H, NH). <sup>13</sup>C NMR (CDCl<sub>3</sub> 100 MHz, 25 °C): δ 15.5, 43.7, 107.1, 108.2, 117.2, 124.5, 124.9, 126.1, 128.8, 131.9, 138.4, 142.5. GC-EIMS: *m/z* 268.3 [M]<sup>+</sup>. λ<sub>max</sub> = 228, 255 nm.

[Cu(3-mtdpm)(hfacac)]. 5-(3-Methylthiophenyl)dipyrromethane (72 mg, 0.27 mmol) was dissolved in 60 mL of CHCl<sub>3</sub> and stirred in an ice bath. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (61 mg, 0.27 mmol) was dissolved in 60 mL benzene and added dropwise over ~30 min. Solid [Cu(hfacac)<sub>2</sub>]·H<sub>2</sub>O (134 mg, 0.27 mmol) was added to the reaction mixture. The mixture was stirred for 10 min. to form the copper complex. The reaction mixture was evaporated to dryness, and the product was purified by column chromatography (SiO<sub>2</sub>; CH<sub>2</sub>Cl<sub>2</sub>) to afford a red/green film. Yield: 86% (124 mg). APCI-MS: m/z 535.9 [M+H]<sup>+</sup>. HR-EIMS Calcd for C<sub>21</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>F<sub>6</sub>SCu: 534.9971.

Found: 534.9976.  $\lambda_{max} = 228, 260, 319, 490 \text{ nm}$ . IR (film from CH<sub>2</sub>Cl<sub>2</sub>): v 1001, 1033, 1145, 1154, 1207, 1251, 1549, 1646, 2854, 2925 cm<sup>-1</sup>.

[Cu(4-mtdpm)(hfacac)]. The same procedure was used as in the synthesis of [Cu(3-mtdpm)(hfacac)] starting from 5-(4-methylthiophenyl)dipyrromethane (100 mg, 0.37 mmol). Yield: 54% (108 mg). APCI-MS: m/z 535.8 [M+H]<sup>+</sup>. HR-EIMS Calcd for C<sub>21</sub>H<sub>14</sub>N<sub>2</sub>O<sub>2</sub>F<sub>6</sub>SCu: 534.9971. Found: 534.9973.  $\lambda_{max}$ = 261, 377, 489 nm. IR (film from CH<sub>2</sub>Cl<sub>2</sub>): v 1001, 1033, 1154, 1208, 1251, 1544, 1559, 1647, 2851, 2923 cm<sup>-1</sup>.

[Cu(4-mtdpm)<sub>2</sub>]. (Note: This procedure is used to synthesize [Cu(4mtdpm)(acac), but purification of the product afforded [Cu(4-mtdpm)<sub>2</sub>]). The same procedure was used in the synthesis of [Cu(3-mtdpm)(hfacac)], starting from 5-(4methylthiophenyl)dipyrromethane (100 mg, 0.37 mmol) and [Cu(acac)<sub>2</sub>] (97 mg, 0.37 mmol). Yield: 89% (98 mg). APCI-MS: m/z 593.92 [M+H]<sup>+</sup>. Anal Calcd for C<sub>32</sub>H<sub>26</sub> N<sub>4</sub>S<sub>2</sub>Cu: C, 64.68; H, 4.41; N, 9.43. Found: C, 64.79; H, 4.77; N, 9.56.  $\lambda_{max}$ = 259, 374, 467, 499 nm. IR (film from CH<sub>2</sub>Cl<sub>2</sub>): v 996, 1023, 1037, 1243, 1334, 1376, 1541, 1555, 2918, 3095 cm<sup>-1</sup>.

## X-Ray Crystallographic Data

**Structure of [Cu(4-mtdpm)**<sub>2</sub>]. Green blocks were grown out of a solution of the complex in hexanes/CH<sub>2</sub>Cl<sub>2</sub> by slow evaporation. CCDC deposition number 246586.

Structure of [Cu(4-mtdpm)(hfacac)]. Red/green blocks were grown out of a solution of the complex in  $CH_2Cl_2$  by slow evaporation. CCDC deposition number 246587.

Structure of [Cu(3-mtdpm)(hfacac)]. Red/green rods were grown out of a solution of the complex in  $CH_2Cl_2/MeOH$  by slow evaporation. CCDC deposition number 246588.

|                                                                                                                                                                                                       | [Cu(4-mtdpm) <sub>2</sub> ]   | [Cu(4-<br>mtdpm)(hfacac)]      | [Cu(3-<br>mtdpm)(hfacac)]     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|-------------------------------|
| Empirical<br>Formula                                                                                                                                                                                  | $C_{32}H_{26}N_4S_2Cu$        | $C_{22}H_{16}Cl_2F_6N_2O_2SCu$ | $C_{21}H_{14}F_6N_2O_2SCu$    |
| Formula<br>Weight                                                                                                                                                                                     | 594.23                        | 620.87                         | 535.94                        |
| Space Group                                                                                                                                                                                           | Pbca                          | P212121                        | $P2_1/n$                      |
| Unit Cell dimensions                                                                                                                                                                                  | a = 18.082(2) Å               | <i>a</i> = 8.6561(8) Å         | <i>a</i> = 12.8881(11) Å      |
|                                                                                                                                                                                                       | <i>b</i> = 8.9956(11) Å       | <i>b</i> = 16.1930(15) Å       | b = 16.6327(14) Å             |
|                                                                                                                                                                                                       | c = 32.899(4) Å               | c = 33.492(3) Å                | c = 19.7978(17) Å             |
|                                                                                                                                                                                                       | $\alpha = 90^{\circ}$         | $\alpha = 90^{\circ}$          | $\alpha = 90^{\circ}$         |
|                                                                                                                                                                                                       | $\beta = 90^{\circ}$          | $\beta = 90^{\circ}$           | $\beta = 96.5230(10)^{\circ}$ |
|                                                                                                                                                                                                       | $\gamma = 90^{\circ}$         | $\gamma = 90^{\circ}$          | $\gamma = 90^{\circ}$         |
| Volume, Z                                                                                                                                                                                             | 5351.4(11) Å <sup>3</sup> , 8 | 4694.5(8) Å <sup>3</sup> , 8   | 4216.5(6) Å <sup>3</sup> , 8  |
| Temperature<br>(K)                                                                                                                                                                                    | 100(2)                        | 100(2)                         | 100(2)                        |
| λ                                                                                                                                                                                                     | 0.71073 Å                     | 0.71073 Å                      | 0.71073 Å                     |
| Pcaled                                                                                                                                                                                                | $1.475 \text{ g cm}^{-3}$     | $1.757 \text{ g cm}^{-3}$      | 1.689 g cm <sup>-3</sup>      |
| μ                                                                                                                                                                                                     | 1.003 mm <sup>-1</sup>        | 1.320 mm <sup>-1</sup>         | 1.210 mm <sup>-1</sup>        |
| Final $R$ indicesI>2 $\sigma$ (I) $^{a}$                                                                                                                                                              | R1 = 0.0371                   | R1 = 0.0476                    | R1 = 0.0368                   |
|                                                                                                                                                                                                       | wR2 = 0.0878                  | wR2 = 0.1150                   | wR2 = 0.0907                  |
| R indices (all data) <sup><i>a</i></sup>                                                                                                                                                              | R1 = 0.0421                   | R1 = 0.0518                    | R1 = 0.0478                   |
|                                                                                                                                                                                                       | wR2 = 0.0902                  | wR2 = 0.1178                   | wR2 = 0.0960                  |
| <sup>a</sup> $R_1 = \sum \left\  F_o \right\  - \left  F_c \right\  / \sum \left  F_o \right $ , $R_2 = \left\{ \sum \left[ w (F_o^2 - F_c^2)^2 \right] / \sum \left[ w F_o^4 \right] \right\}^{1/2}$ |                               |                                |                               |

 Table S1.
 X-ray data for [Cu(4-mtdpm)<sub>2</sub>], [Cu(4-mtdpm)(hfacac)], and [Cu(3-mtdpm)(hfacac)].



**Fig. S1.** Packing diagram (spacefill representation) of [Cu(4-mtdpm)(hfacac)] viewed down the crystallographic *a*-axis (top) and *b*-axis (bottom). The spatial separation of the hfacac ligands (fluorine in yellow) can easily be seen in both perspectives. Hydrogen atoms have been removed for clarity.