Electronic Supplementary Information

"Polar Patch" Proteases as Glycopeptiligases

Katie Doores and Benjamin G. Davis*

Department of Chemistry, Oxford University, Chemistry Research Laboratory, Mansfield Road, Oxford, UK, OX1 3TA.

E-mail: ben.davis@chem.ox.ac.uk

Scheme 1: Synthesis of compound 1.

N-Benzyloxycarbonyl-L-serine B

L-Serine A ($5.00 \mathrm{~g}, 47.6 \mathrm{mmol}$) was dissolved in sodium hydrogencarbonate (200 mL of a saturated aqueous solution). Benzyl chloroformate ($12.2 \mathrm{~g}, 71.4 \mathrm{mmol}$) was added. After 18 h , the reaction mixture was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The aqueous layer was acidified to pH 3 with concentrated hydrochloric acid then extracted with ethyl acetate ($4 \times 100 \mathrm{~mL}$). The combined organic layers were dried (MgSO_{4}), filtered and concentrated in vacuo. Recrystallisation (ethyl acetate/petrol) afforded N-benzyloxycarbonyl-L-serine B (7.10 g, 62\%) as a white crystalline solid, m.p 112-113 ${ }^{\circ} \mathrm{C}\left[\right.$ Lit. $116-118{ }^{\circ} \mathrm{C}$ (ethyl acetate/petrol)]; ${ }^{1}[\alpha]_{\mathrm{D}}{ }^{24}+8.2(c, 1.0$ in acetic acid) $\left[\right.$ Lit. $[\alpha]_{\mathrm{D}}{ }^{20}+5.95(c, 1.0$ in acetic acid) $] ;{ }^{1} \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.66(2 \mathrm{H}, \mathrm{bs}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.05(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}), 4.88\left(1 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2} \mathrm{OH}\right), 5.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 7.32(1 \mathrm{H}$, d, $J_{\mathrm{NH}, \alpha \mathrm{AH}} 8.7 \mathrm{~Hz}, \mathrm{NH}$), 7.30-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 12.63 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{COOH}$).

N-Benzyloxycarbonyl-O-tert-butyldimethylsilyl-L-serine C

N-Benzyloxycarbonyl-L-serine B ($2.00 \mathrm{~g}, 8.37 \mathrm{mmol}$), imidazole (recrystallised from ethanol, $2.24 \mathrm{~g}, 33.5 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($1.90 \mathrm{~g}, 12.6 \mathrm{mmol}$) were dissolved in DMF (80 mL) and heated to $60^{\circ} \mathrm{C}$ under argon. After 72 h , t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.6$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.1$). The reaction mixture was concentrated in vacuo. The residue was suspended in petrol, and extracted with sodium hydrogen carbonate ($5 \% \mathrm{w} / \mathrm{v}, 3 \times 35 \mathrm{~mL}$). The phases were separated and the aqueous layer was acidified to pH 3 using potassium hydrogensulfate (1 M solution). The resulting solution was extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic layers were washed with brine $(40 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The product was recrystallised (ethyl acetate/petrol) to afford N-benzyloxycarbonyl-O-tert-butyldimethylsilyl-L-serine C ($2.26 \mathrm{~g}, 77 \%$) as a white crystalline solid, m.p. $77-78{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{24}+24.8\left(c, 1.0\right.$ in CHCl_{3}); $\mathrm{v}_{\max }(\mathrm{KBr}) 3337$ (br, N-H), 3068 (br, O-H), 1759, 1739 (s, NC(O)O), 1690 (s, C(O)OH) cm ${ }^{-1}$; δ_{H} ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) 0.01, 0.02 ($\left.6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{Si}^{-C H}\right)_{3}$, $0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.81$ ($2 \mathrm{H}, \mathrm{d}, J_{\mathrm{CH} 2, \mathrm{CH}} 1.2 \mathrm{~Hz}, \mathrm{Si}-\mathrm{O}-\mathrm{CH}_{2}$), $4.13\left(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}\right.$), 5.04 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}$-Ph), 7.29-7.37 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}, \mathrm{NH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) -4.7, -4.6 (2 x q, $2 \times \mathrm{Si}-\mathrm{CH}_{3}$), 18.8 (s, Si$\left.\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.7,26.6\left(2 \times \mathrm{q}, 3 \times \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $57.0(\mathrm{~d}, \alpha \mathrm{C}), 63.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Ph}\right), 66.3(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{OH}$), 128.6, 128.7, 129.2 (3 x d, 5 x Ar-C), 137.8 (s, Ar-C), 156.8 (s, NC(O)O), $172.5\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 354\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$, ($\mathrm{M}+\mathrm{Na}^{+}, 55 \%$); HRMS (ESI+) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{H}^{+}\right)$354.1737. Found 354.1741.

N-Benzyloxycarbonyl-O-tert-butyldimethylsilyl-L-serine-para-nitroanilide D

N-Benzyloxycarbonyl-O-tert-butyldimethylsilyl-L-serine C ($600 \mathrm{mg}, 1.70 \mathrm{mmol}$) and para-nitroaniline ($356 \mathrm{mg}, 2.55 \mathrm{mmol}$) were dissolved in anhydrous pyridine (10 mL) and cooled to $-15{ }^{\circ} \mathrm{C}$. Phosphorous oxychloride ($0.30 \mathrm{~mL}, 2.21 \mathrm{mmol}$) was added and the mixture stirred at $-15^{\circ} \mathrm{C}$. After 2 h , t.l.c. (petrol:ethyl acetate, 3:1) showed the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.3$) with complete consumption of the starting material (R_{f} $0.1)$. The reaction was quenched with ice water (50 mL) and extracted with ethyl acetate ($3 \times 40 \mathrm{~mL}$). The combined organic layers were washed with sodium hydrogencarbonate (30 mL of a saturated aqueous solution) and brine (30 mL), dried (MgSO_{4}), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petrol:ethyl acetate, 3:1) to afford N -benzyloxycarbonyl- O -tert-butyldimethylsilyl-L-serine-para-nitroanilide $\mathbf{D}(820 \mathrm{mg}, 80 \%$) as a yellow crystalline solid; m.p. 113-114 ${ }^{\circ} \mathrm{C}$ (ethyl acetate/petrol); $[\alpha]_{\mathrm{D}}{ }^{23}-6.4$ (c, 1.0 in CHCl_{3}); $v_{\text {max }}(\mathrm{KBr}) 3328$ (br, N-H), 1717, 1682 (s, NC(O)O), 1616, 1600 (s, C(O)NH), 1502, $1341\left(\mathrm{~s}, \mathrm{NO}_{2}\right) \mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{d}_{6}-\mathrm{DMSO}\right)-0.3\left(6 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.77(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}-\mathrm{Si}\right), 4.38(1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}), 5.04\left(2 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.33$
(5H, m, Ar-H), 7.60 ($1 \mathrm{H}, \mathrm{d}, J_{\mathrm{NH}, \alpha \mathrm{H}} 7.7 \mathrm{~Hz}, \mathrm{NH}-\alpha \mathrm{H}$), 7.87 ($2 \mathrm{H}, \mathrm{d}, J 9.3 \mathrm{~Hz}, o-\mathrm{Ar}-\mathrm{H}$ $p N A), 8.22$ ($2 \mathrm{H}, \mathrm{d}, m-\mathrm{Ar}-\mathrm{H} p \mathrm{NA}$), $10.73(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}-\mathrm{Ar}-\mathrm{C})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO) -5.5 ($\left.2 \mathrm{xq}, 2 \times \mathrm{xi}-\left(\mathrm{CH}_{3}\right)_{2}\right), 18.1$ (s, $\left.\mathrm{Si}-\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 25.8 (q, $\left.3 \times \mathrm{Si}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 63.1 (t, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 67.5$ (t, $\underline{\mathrm{CH}}_{2} \mathrm{Ar}$), 119.2 (d, $2 \times \mathrm{m}-\mathrm{Ar}-\mathrm{C} p \mathrm{NA}$), 125.1 (d, $2 \times o$-Ar-C $p \mathrm{NA}$), 128.2, 128.5, 128.6 (3 x d, 5 x Ar-C), 137.7, 143.16, 145.8 (3 x s, 3 x Ar-C), 156.8 (s, NC(O)O), 171.1 (s, C(O)N); m/z (ESI+) 969 ($2 \mathrm{M}+\mathrm{Na}^{+}, 100$), 496 (M+Na ${ }^{+}, 55 \%$); HRMS (ESI+) Calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{NaSi}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$496.1880. Found 496.1889.

N-Benzyloxycarbonyl-L-serine-para-nitroanilide 1

N-Benzyloxycarbonyl-O-tert-butyldimethylsilyl-L-serine-para-nitroanilide D (2.10 g , 4.44 mmol) was dissolved in anhydrous THF (50 mL). Tetrabutylammonium fluoride (35.0 mL of a 1 M solution in THF, 35.5 mmol) was added and the reaction was stirred under an atmosphere of argon at RT. After a 24 h period, t.l.c. (ethyl acetate) showed formation of a product ($\mathrm{R}_{\mathrm{f}} 0.4$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.7$). The reaction mixture was concentrated in vacuo, re-suspended in ethyl acetate $(100 \mathrm{~mL})$ and washed with water ($2 \times 100 \mathrm{~mL}$). The aqueous layers were re-extracted with ethyl acetate ($2 \times 50 \mathrm{~mL}$) and the combined organic layers dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (ethyl acetate) to afford N-benzyloxycarbonyl-L-serine-paranitroanilide 1 ($1.30 \mathrm{~g}, 85 \%$) as a yellow crystalline solid; m.p. $154-155{ }^{\circ} \mathrm{C}$ (ethyl acetate/petrol); $[\alpha]_{\mathrm{D}}{ }^{22}-49.5$ (c, 1.0 in MeOH); $v_{\text {max }}(\mathrm{KBr}) 3333$ (br, N-H, O-H), 1683 (s, NC(O)O), 1616, 1597 (s, C(O)N), 1511, 1340 (s, NO2) cm ${ }^{-1}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 3.87\left(2 \mathrm{H}, \mathrm{d}, J_{\mathrm{CH} 2, \alpha \mathrm{H}} 5.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.40(1 \mathrm{H}, \mathrm{t}, J 5.1 \mathrm{~Hz}, \alpha \mathrm{H}), 5.13,5.16$ ($2 \mathrm{H}, 2 \mathrm{x} \mathrm{s}, \mathrm{PhCH}_{2}$), 7.32-7.35 (5H, m, $5 \mathrm{x} \mathrm{Ar-H}$), 7.85 ($2 \mathrm{H}, \mathrm{d}, J 8.8 \mathrm{~Hz}, m-\mathrm{Ar}-\mathrm{H}$ pNA), 8.21 ($2 \mathrm{H}, \mathrm{d}, o-\mathrm{Ar}-\mathrm{H} p \mathrm{NA}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 58.2$ (d, $\alpha \mathrm{CH}$), 62.2 (t, $\mathrm{CH}_{2}-\mathrm{OH}$), 66.9 (t, $\underline{\mathrm{C}}_{2}-\mathrm{Ar}$), 119.7 (d, $2 \times \mathrm{m}$-Ar-C $p \mathrm{NA}$), 124.7 (d, $2 \times \mathrm{o}$-Ar-C $p \mathrm{NA}$), 127.9, 128.1, 128.4 (3 x d, 5 x Ar-C), 137.2, 143.8, 144.9 (3 x s, 3 x Ar-C), 157.7 (s, $\mathrm{NC}(\mathrm{O}) \mathrm{O}), 171.0(\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{N}) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 360\left(\mathrm{M}+\mathrm{H}^{+}, 70\right), 377\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$; HRMS (ESI+) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$382.1015. Found 382.1008.

O-(2,3,4,6-O-Acetyl)- β-D-glucopyranosyl-N-benzyloxycarbonyl-L-serine-paranitroanilide 3

2,3,4,6-Tetra-O-acetyl- α-D-glucopyranosyl trichloroacetimidate 2 (186 mg , 0.38 mmol) was added to a solution of N-benzyloxycarbonyl-L-serine-paranitroanilide 1 ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) in anhydrous DCM (4 mL) with $4 \AA$ molecular sieves. Trimethylsilyltriflate ($15 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) was added to the solution and left to stir under argon. After 16 h, t.l.c. (ethyl acetate:petrol, 2:1) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.3$) with consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.7$). The reaction mixture was filtered through celite, washed with water (10 mL) and the aqueous layer
extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue purified by flash column chromatography (2:1, ethyl acetate:petrol) to afford O-(2,3,4,6-O-acetyl)- β-D-glucopyranosyl- N-benzyloxycarbonyl-L-serine-para-nitroanilide 3 ($90 \mathrm{mg}, 40 \%$) as a yellow oil; $[\alpha]_{\mathrm{D}}{ }^{25}-3.90$ (c, 1.0 in CHCl_{3}); $v_{\text {max }}$ (thin film) 3354 (br, O-H, N-H), 1755 (s, C=O), 1521, $1340\left(\mathrm{~s}, \mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.99,2.01,2.03,2.04$ ($12 \mathrm{H}, 4 \mathrm{x} \mathrm{s}, 4 \times \mathrm{CH}_{3}$), 3.71-3.76 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), $3.92\left(1 \mathrm{H}\right.$, at, J $8.4 \mathrm{~Hz}, \mathrm{CHH}{ }^{\prime}$), 4.15-4.23 (3H, m, CHH’O, H-6, H-6’), 4.56-4.60 (1H, $\left.J_{1,2} 5.4 \mathrm{~Hz}, \mathrm{H}-1\right), 4.62-4.68$ (1H, bs, $\alpha \mathrm{H}), 4.99(1 \mathrm{H}, \mathrm{at}, J 9.2 \mathrm{~Hz}, \mathrm{H}-2), 5.09(1 \mathrm{H}, ~ \mathrm{at}, J 9.1 \mathrm{~Hz}, \mathrm{H}-4), 5.15,5.17$ (2H, 2 x s, C $\underline{H}_{2} \mathrm{Ar}$), 5.19 ($1 \mathrm{H}, ~ a t, J 2.5 \mathrm{~Hz}, \mathrm{H}-3$), 5.69 (1 H , bs, NHCH), 7.34-7.39 (5 H , m, Ar), 7.35 ($2 \mathrm{H}, \mathrm{d}, J 9.0 \mathrm{~Hz}, m-\mathrm{H}$), 8.22 ($2 \mathrm{H}, \mathrm{d}, o-\mathrm{H}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 20.4, 20.4, 20.5, 20.6 ($4 \times \mathrm{q}, 4 \times \mathrm{CH}_{3}$), 56.9 (d, $\alpha \mathrm{H}$), 61.2 (t, C-6), 67.5 (t, $\underline{\mathrm{CH}}_{2} \mathrm{Ar}$), 67.9 (d, C-4), 69.8 (t, CH2O), 70.9 (d, C-2), 71.2 (d, C-5), 72.2 (d, C-3), 101.9 (d, C-1), 119.3 (d, $2 \times \mathrm{m}-\mathrm{C}$), 124.9 (d, $2 \times o-\mathrm{C}$), 128.1, 128.2, 128.4 ($3 \times \mathrm{d}, 5 \mathrm{x} \mathrm{Ar}$), 135.7 (s, Ar-C), 143.0 (s, Ar-C-NH), 143.8 (s, Ar-C-NO ${ }_{2}$), 168.2 (s, NC(O)O), 169.2, 169.3, 169.4, 169.9 ($4 \mathrm{x} \mathrm{s}, 4 \times \mathrm{C}(\mathrm{O}) \mathrm{Me}$), 170.7 (s, C(O)N); m/z (ESI+) 712 (M+Na ${ }^{+}, 100$), 1401 $\left(2 \mathrm{M}+\mathrm{Na}^{+}, 30 \%\right)$; HRMS (ESI+) calcd. for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{15} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$712.1966. Found 712.1969 .

O - β-D-Glucopyranosyl- N-benzyloxycarbonyl-L-serine-para-nitroanilide 4

O-(2,3,4,6-O-Acetyl)- β-D-glucopyranosyl- N-benzyloxycarbonyl-L-serine-paranitroanilide 3 ($128 \mathrm{mg}, 0.22 \mathrm{mmol}$) was dissolved in methanol (1.5 mL). Hydrazine monohydrate ($150 \mu \mathrm{~L}, 1.74 \mathrm{mmol}$) was added and the reaction stirred under an atmosphere of argon. After 16 h , t.l.c. (ethyl acetate:methanol, 9:1) indicated the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.4$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.7$). The reaction mixture was concentrated in vacuo and the residue purified by flash column chromatography (ethyl acetate:methanol, 9:1) to afford O- β-D-glucopyranosyl-N-benzyloxycarbonyl-L-serine-para-nitroanilide 4 ($90 \mathrm{mg}, 79 \%$) as a yellow oil; $[\alpha]_{\mathrm{D}}{ }^{22}-7.5$ (c, 1.0 in MeOH); $v_{\text {max }}$ (thin film) 3305 (br, OH), 1749 (s, $\mathrm{C}=\mathrm{O}), 1506,1343\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) 3.20\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 7.5 \mathrm{~Hz}, J_{2,3}\right.$ $9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.27-3.34$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5$), 3.37 ($1 \mathrm{H}, \mathrm{dd}, J_{3,4} 10.8 \mathrm{~Hz}, \mathrm{H}-3$), $3.66(1 \mathrm{H}$, dd, $\left.J_{5,6} 5.4 \mathrm{~Hz}, J_{6,6}, 11.8 \mathrm{~Hz}, \mathrm{H}-6\right)$, $3.88\left(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-6^{\prime}\right), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{CH}} 10.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{CH}, \alpha \mathrm{H}} 5.9 \mathrm{~Hz}, \mathrm{CH}{ }^{\prime}{ }^{\prime} \mathrm{O}\right), 4.23-4.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}{ }^{\prime} \mathrm{O}\right), 4.35(1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1), 4.55-4.59(1 \mathrm{H}$, $\mathrm{m}, \alpha \mathrm{H}$), 5.15 ($2 \mathrm{H}, \mathrm{d}, ~ J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.31-7.40 (5H, m, Ar), 7.87 ($2 \mathrm{H}, \mathrm{d}, ~ J 8.9 \mathrm{~Hz}$, m-Ar-H pNA), $8.23(2 \mathrm{H}, \mathrm{d}, o-\mathrm{Ar}-\mathrm{H} p \mathrm{NA})$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) 56.3(\mathrm{~d}, \alpha \mathrm{H}), 61.5$ (t, C-6), $67.0\left(\mathrm{t}, \underline{\mathrm{C}}_{2} \mathrm{Ph}\right), 69.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}\right), 70.5(\mathrm{~d}, \mathrm{C}-4), 74.0(\mathrm{~d}, \mathrm{C}-2), 76.9,77.0$ (2 x d, C-3, C-5), 103.7 (d, C-1), 119.8 (d, m-Ar-C $p \mathrm{NA}$), 124.7 (d, o-Ar-C $p \mathrm{NA}$), 127.9, 128.0, 128.1, (3 x d, 5 x Ar), 143.9, 144.6, 157.7 (3 x s, $3 \times \mathrm{Ar}-\mathrm{C}$), 170.4 (s, NC(O)O), 172.1 (s, C(O)N); m/z (ESI-) 520 (M-H $\left.{ }^{+}, 100 \%\right)$; HRMS (ESI-) Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{11} 520.1567$. Found 520.1567.

N-Benzyloxycarbonyl-L-serine methyl ester 5

Thionyl chloride ($1.18 \mathrm{~mL}, 16.3 \mathrm{mmol}$) was added dropwise to a solution of N -benzyloxycarbonyl-L-serine B ($2.6 \mathrm{~g}, 10.9 \mathrm{mmol}$) in anhydrous methanol (20 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred under nitrogen. After a period of 3 h , t.l.c. (9:1, ethyl acetate:methanol) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.6$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.0$). The reaction mixture was concentrated in vacuo and resuspended in diethyl ether (20 mL). The solution was filtered and the filtrate was washed with sodium hydrogen carbonate (20 mL of a saturated aqueous solution), dried $\left(\mathrm{MgSO}_{4}\right)$ and triturated with petrol to yield N-benzyloxycarbonyl-Lserine methyl ester 5 ($2.0 \mathrm{~g}, 75$ \%) as a waxy solid; m.p. 31-32 ${ }^{\circ} \mathrm{C}$ [Lit. $33-35{ }^{\circ} \mathrm{C}$]; ${ }^{2}$ $[\alpha]_{D}{ }^{25}-17.3\left(c, 1.0\right.$ in MeOH), [Lit. $[\alpha]_{D}{ }^{25}-13.2\left(c, 1.0\right.$ in MeOH)]; ${ }^{2} \delta_{\mathrm{H}}(200 \mathrm{MHz}$, CDCl_{3}) $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.85\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{NH}} 3.5 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{CH}}, 11.3 \mathrm{~Hz}, \mathrm{CHH}{ }^{\prime} \mathrm{O}\right), 3.96$ ($1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \mathrm{NH}} 3.9 \mathrm{~Hz}, \mathrm{CH} \underline{H}^{\prime} \mathrm{O}$), 4.40-4.45 ($1 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}$), 5.10 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 5.98 (1H, d, J $7.9 \mathrm{~Hz}, \mathrm{NH}$), 7.39 (5H, s, Ar-H).

O-(2,3,4,6-O-Acetyl)- β-D-glucopyranosyl- N-benzyloxycarbonyl-L-serine-methyl ester 6

2,3,4,6-Tetra-O-acetyl- α-D-glucopyranosyl trichloroacetimidate 2 (194 mg, 0.39 mmol) was added to a solution N-benzyloxycarbonyl-L-serine methyl ester 5 ($150 \mathrm{mg}, 0.59 \mathrm{mmol}$) in anhydrous DCM (3 mL) with $4 \AA$ molecular sieves. Trimethylsilyltriflate ($13 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) was added to the solution and left to stir under argon. After 3 h , t.l.c. (ethyl acetate:petrol, 2:1) indicated formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with consumption of some of the starting material $\left(\mathrm{R}_{\mathrm{f}} 0.7\right)$. The reaction mixture was filtered through celite, washed with water (10 mL) and the aqueous layer extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue purified by flash column chromatography (2:1, ethyl acetate:petrol) to afford $O-(2,3,4,6-O$-acetyl)- β-D-glucopyranosyl- N-benzyloxycarbonyl-L-serine-methyl ester 6 (104 mg, 46%) as a clear oil; $[\alpha]_{\mathrm{D}}{ }^{25}+7.5\left(c, 1.0 \mathrm{CHCl}_{3}\right.$); $v_{\text {max }}$ (thin film) 3360 (br, NH), 1750 (s, $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.00,2.02,2.03,2.08\left(12 \mathrm{H}, 4 \mathrm{x} \mathrm{s}, 4 \mathrm{xCH}_{3}\right), 3.62$ (1 H , ddd, $J_{4,5} 9.9 \mathrm{~Hz}, J_{5,6} 2.2 \mathrm{~Hz}, J_{5,6}, 4.6 \mathrm{~Hz}, \mathrm{H}-5$), 3.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.84-3.90 (1 H , m , CHH’O), 4.11 ($1 \mathrm{H}, \mathrm{dd}, J_{6,6}{ }^{\prime} 12.2 \mathrm{~Hz}, \mathrm{H}-6$), 4.22-4.26 (2H, m, H-6', CHㅐㅇㅇ), 4.48-4.52 ($2 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}, \mathrm{H}-1$), 4.94 ($1 \mathrm{H}, \mathrm{dd}, J_{1,2} 8.1 \mathrm{~Hz}, J_{2,3} 9.4 \mathrm{~Hz}, \mathrm{H}-2$), 5.05 (1 H , at, J 9.5 Hz, H-4), 5.13-5.18 (3H, m, H-3, CH2 Ph), 5.58 (1H, d, J 7.6 Hz, NH), 7.33-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 20.5-20.7 (52.8 (q, OMe), 54.3 (d, $\alpha-\mathrm{C}$), 61.7 (t, C-6), 67.1 (t, $\left.\underline{C H}_{2} \mathrm{Ph}\right), 68.1$ (d, C-4), 69.3 (t, CH2O), 71.0 (d, C-2), 71.8 (d, C-5), 72.5 (d, C-3), 101.0 (d, C-1), 128.2, 128.3, 128.6 (3 x d, 5 x Ar-C), 136.1 (s, Ar-C), 156.0 (s, NC(O)O), 169.2, 169.3, 169.9, 170.2, 170.6 (5 x s, 5 x C=O); m/z (ESI+) $584\left(\mathrm{M}+\mathrm{H}^{+}, 98\right), 606\left(\mathrm{M}+\mathrm{Na}^{+} 100 \%\right)$; HRMS (ESI +) calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{14}\left(\mathrm{M}-\mathrm{H}^{+}\right)$ 584.1979. Found 584.1969.

$O-\beta$-D-Glucopyranosyl- N-benzyloxycarbonyl-L-serine-methyl ester 7

O-(2,3,4,6-O-Acetyl)- β-D-glucopyranosyl- N-benzyloxycarbonyl-L-serine-methyl ester 6 ($92 \mathrm{mg}, 0.16 \mathrm{mmol}$) was dissolved in methanol (2 mL). Hydrazine monohydrate ($63 \mu \mathrm{~L}, 1.26 \mathrm{mmol}$) was added and the reaction stirred under an atmosphere of argon. After 40 h , t.l.c. (ethyl acetate:methanol, 4:1) indicated the formation of a product ($\mathrm{R}_{\mathrm{f}} 0.5$) with complete consumption of the starting material ($\mathrm{R}_{\mathrm{f}} 0.7$). The reaction mixture was concentrated in vacuo and the residue purified by flash column chromatography (ethyl acetate:methanol, 4:1) to afford $O-\beta$-D-glucopyranosyl- N-benzyloxycarbonyl-L-serine-methyl ester 7 (22 mg, 33%) as a clear oil; $[\alpha]_{\mathrm{D}}{ }^{25}-6.1$ (c, 1.0 MeOH); $v_{\text {max }}(t h i n ~ f i l m) ~ 3426$ (br, N-H, O-H), 1651 (s, $\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 3.17\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 7.8 \mathrm{~Hz}, J_{2,3} 9.1 \mathrm{~Hz}, \mathrm{H}-2\right)$, 3.263.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$), 3.31-3.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-4$), 3.65-3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 3.76 ($3 \mathrm{H}, \mathrm{s}$, OMe), 3.78-3.80 ($1 \mathrm{H}, \mathrm{m}, ~ С \underline{H} H^{\prime} \mathrm{O}$), 3.86 (1 H , dd, $J_{6,6}, 12.2 \mathrm{~Hz}, J_{5,6}, 2.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 4.26 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1$), 4.38 (1 H , dd, $J_{\alpha \mathrm{H}, \text { сн }} 3.8 \mathrm{~Hz}, J_{\text {Сн,Сн }} 9.8 \mathrm{~Hz}, \mathrm{CH} \underline{H}^{\prime} \mathrm{O}$), 4.49 (1 H , at, $J 3.5 \mathrm{~Hz}, \alpha \mathrm{H}, 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.28-7.31$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ 50.0 (q, CH3), 56.2 (d, $\alpha-\mathrm{C}$), 63.0 (t, C-6), 68.2 (t, CH2O), 71.0 (t, $\mathrm{CH}_{2} \mathrm{Ph}$), 71.8 (d, C5), 75.4 (d, C-2), 78.2 (d, C-3), 78.5 (d, C-4), 105.0 (d, C-1), 129.3, 129.5, 129.9 (3 x d, 5 x Ar-C), 141.1 (s, Ar-C), 154.0 (s, NC(O)O), 172.8 (s, C=O); m/z (ESI+) 438 $\left(\mathrm{M}+\mathrm{Na}^{+}, 90\right), 853\left(2 \mathrm{M}+\mathrm{Na}^{+}, 100 \%\right)$; HRMS (ESI-) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{10} \mathrm{Cl}\left(\mathrm{M}+\mathrm{Cl}^{-}\right)$ 450.1167. Found 450.1177.

General Method for Peptide ligation

$O-\beta$-D-Glucopyranosyl- N-benzyloxycarbonyl-L-serine-methyl ester 7 ($10.0 \mathrm{mg}, 0.024$ mmol) and hydrochloride of acyl acceptor amine (0.072 mmol) were suspended in DMF ($200 \mu \mathrm{~L}$). Triethylamine ($6.9 \mu \mathrm{~L}, 0.048 \mathrm{mmol}$) and appropriate CMM ($200 \mu \mathrm{l}$ of $1.4 \mathrm{mg} / \mathrm{mL}$ solution in water) were added. A further 4 aliquots of enzyme were added ($100 \mu \mathrm{~L}$ of $1.4 \mathrm{mg} / \mathrm{mL}$ solution in water) at 24 h intervals. The reaction mixture was concentrated in vacuo and purified by column chromatography (water:isopropanol:ethyl acetate, 2:4:4) to yield ligated glycopeptide.

Z-(Glc)-Ser-Gly-NH2 8

$[\alpha]_{\mathrm{D}}{ }^{19}-2.6(c, 0.5$ in MeOH$) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 3.19\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 7.8 \mathrm{~Hz}, J_{2,3}\right.$ $1.2 \mathrm{~Hz}, \mathrm{H}-2$), 3.25-3.39 (3H, m, H-3, H-4, H-5), 3.64-3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$), 3.80-3.89 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ 'O, H-6’, CH ${ }_{2}(\mathrm{Gly})$), $4.25\left(1 \mathrm{H}, \mathrm{dd}, J_{\alpha H, \mathrm{CH}} 3.0 \mathrm{~Hz}, J_{\mathrm{CH}, \mathrm{CH}}{ }^{\prime} 10.2 \mathrm{~Hz}\right.$, CHH’O), 4.32 ($1 \mathrm{H}, \mathrm{d}, \mathrm{H}-1$), 4.39 (1 H , at, $J 4.6 \mathrm{~Hz}, \alpha \mathrm{H}$), 5.13 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.97.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 42.4$ (t, CH2(Gly)), 55.8 (d, $\alpha \mathrm{C}$), 61.6 (t, C-6), 66.9 (d, $\underline{\mathrm{CH}}_{2} \mathrm{Ph}$), 73.6 (d, $\mathrm{CH}_{2} \mathrm{O}$), 70.4 (d, C-5), 74.0 (d, C-2), 76.8 (d, C-3), 77.1 (d, C-4), 103.3 (d, C-1), 128.0, 128.4, 128.5 (3 x d, 5 x Ar-C), 140.9 (s, Ar-C), 163.0,
164.2 (2 x s, $3 \times \mathrm{C}=\mathrm{O}$); m/z (ESI+) 480 ($\mathrm{M}^{+} \mathrm{Na}^{+}, 100$ \%), HRMS (ESI +) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right) 480.1594$. Found 480.1578 .

Z-(Glc)-Ser- β-Ala-NH2 9

$[\alpha]_{\mathrm{D}}{ }^{19}+7.0(\mathrm{c}, 0.3$ in MeOH$) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.71\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.18(1 \mathrm{H}$, at, $J 8.1 \mathrm{~Hz}, \mathrm{H}-2)$, 3.26-3.38 (3H, m, H-3, H-4, H-5), 3.67 ($1 \mathrm{H}, \mathrm{dd}, J_{5,6} 5.2$ Hz, $J_{6,6}, 11.6 \mathrm{~Hz}, \mathrm{H}-6$), 3.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.5 \mathrm{~Hz}, \mathrm{H}-6$ '), 4.10 (1H, d, J 4.2 Hz , CHH’O), 4.23-4.25 (3H, m, Cㅐㅡ﹎NH, CHH’O), 4.27 ($1 \mathrm{H}, \mathrm{d}, J_{1,2} 7.7 \mathrm{~Hz}, \mathrm{H}-1$), 4.49-4.54 ($1 \mathrm{H}, \mathrm{m}$, $\alpha \mathrm{H}$), 5.13 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.32-7.39 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 38.3$ (t, CH_{2}), 54.4 (d, $\alpha \mathrm{C}$), 61.3 (t, C-6), 66.3 (t, $\underline{\mathrm{C}}_{2} \mathrm{Ph}$), $67.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 69.4$ ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}$), 70.3, 76.6, 76.9 (3 x d, C-3, C-4, C-5), 73.6 (d, C-2), 104.1 (d, C-1), 127.3 (d, 5 x ArC), 136.9 (s, Ar-C), 157.4, 163.7, 171.0 ($3 \mathrm{x} \mathrm{s}, 3 \times \mathrm{C}=\mathrm{O}$); m/z (ESI+) 494 ($\mathrm{M}+\mathrm{Na}^{+}$, 100 \%).

Glc-Z-Ser-GABA-NH2 10

$[\alpha]_{\mathrm{D}}{ }^{21}-1.0(\mathrm{c}, 0.1 \mathrm{in} \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 1.30-1.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.03$ ($2 \mathrm{H}, \mathrm{bs}, \mathrm{CH}_{2}$), $3.20(1 \mathrm{H}, ~ a t, J 8.3 \mathrm{~Hz}, \mathrm{H}-2)$, 3.29-3.33 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4, \mathrm{H}-5$), $3.39(1 \mathrm{H}$, dd, J 8.4 Hz, J $17.3 \mathrm{~Hz}, \mathrm{H}-3)$, $3.69\left(1 \mathrm{H}, \mathrm{dd}, J_{5,6} 5.3 \mathrm{~Hz}, J_{6,6}, 12.4 \mathrm{~Hz}, \mathrm{H}-6\right), 3.73-3.88$ ($4 \mathrm{H}, \mathrm{H}-6, \mathrm{C} H \mathrm{H}^{\prime} \mathrm{O}, \mathrm{CH}_{2} \mathrm{NH}$), 4.29 ($1 \mathrm{H}, \mathrm{d}, J_{1,2} 7.7 \mathrm{~Hz}, \mathrm{H}-1$), 4.38 ($1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{CH}, \alpha \mathrm{H}} 4.2$ $\left.\mathrm{Hz}, J_{\mathrm{CH}, \mathrm{CH}} 10.2 \mathrm{~Hz}, \mathrm{CH} \underline{H}^{\prime} \mathrm{O}\right)$, $4.50(1 \mathrm{H}, \mathrm{ad}, J 3.4 \mathrm{~Hz}, \alpha \mathrm{H})$, 5.13 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), $7.35-$ 7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); dC ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 21.3 (t, CH2), 29.0 (t, CH2), 51.8 (t, $\mathrm{CH}_{2} \mathrm{NH}$), 54.8 (d, $\alpha \mathrm{C}$), 61.1 ($\mathrm{t}, \mathrm{C}-6$), 66.9 (t, $\underline{\mathrm{CH}}_{2} \mathrm{Ph}$), 69.5 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{O}$), 70.3, 76.6 (2 x d, C-4, C-5), 73.3 (d, C-2), 76.4 (d, C-3), 103.1 (d, C-1), 127.9 (d, $5 \times \mathrm{Ar}-\mathrm{C}$), 138.1 (s, Ar-C), 156.3, 163.3, 171.2 ($3 \mathrm{x} \mathrm{s}, 3 \times \mathrm{C}=\mathrm{O}$); m/z (ESI+) $518\left(\mathrm{M}+\mathrm{MeOH}+\mathrm{H}^{+}\right.$, 100 \%).

Glycolipid mimic 11

$[\alpha]_{\mathrm{D}}{ }^{21}-1.8(\mathrm{c}, 0.1 \mathrm{in} \mathrm{MeOH})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 1.25-1.45 ($24 \mathrm{H}, \mathrm{m}, 12 \mathrm{x} \mathrm{CH} 2$), $1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.16-3.29(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{NH}$), 3.41 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-2$), 3.53 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-4$), $3.65-3.72$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}-6$), 3.813.89 ($2 \mathrm{H}, \mathrm{m}, \alpha \mathrm{H}, \mathrm{CH}{ }^{\prime}$ 'O), 4.10-4.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ ', CHH’O), 4.48 ($1 \mathrm{H}, \mathrm{ad}, J 5.5 \mathrm{~Hz}$, $\mathrm{H}-5), 5.11$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 5.31 ($1 \mathrm{H}, \mathrm{bs}, \mathrm{H}-1$), $7.30-7.40$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$); $\delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 11.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 27.8-30.0\left(\mathrm{t}, 12 \times \mathrm{CH}_{2}\right), 30.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 38.4(\mathrm{t}$, $\underline{\mathrm{CH}}_{2} \mathrm{NH}$), 57.8 (t, $\mathrm{CH}_{2} \mathrm{O}$), 62.8 (d. $\alpha \mathrm{C}$), 65.3 (t, C-6), 65.9 (t, $\underline{\mathrm{CH}}_{2} \mathrm{Ph}$), 70.9 (d, C-2),

Enzyme modification

SBL-S166C (approximately 10 mg of enzyme) was added to 0.5 mL of modifying buffer (70 mM CHES, $5 \mathrm{mM} \mathrm{CaCl} 2, \mathrm{pH} 9.5$). To this solution was added the appropriate MTS reagent ($100 \mu \mathrm{~L}$ of a 20 mM aqueous solution). The solution was sealed, vortexed and placed on an end-over-end rotator at room temperature. After a 30 min period a further portion of the MTS reagent ($100 \mu \mathrm{~L}$ of a 10 mg in $200 \mu \mathrm{~L}$ of buffer) was added and rotated for a further 30 min . Completion of the modification was determined by titration with Ellman's reagent showing no free thiol present. The reaction was poured onto a pre-equilibrated desalting column (Amersham PD-10, Sephadex G25) and eluted with water (3.5 mL) and the eluant was dialysed at $4^{\circ} \mathrm{C}$ against distilled water ($2 \times 1 \mathrm{~L}, 2 \times 45 \mathrm{~min}$) to afford the CMMs. MS (ES-MS) m/z: S166C-S-g: calcd 26832, found 26839; S166C-S-e: calcd 26861, found 26869; S166C-S-a: calcd 26864, found 26867; S166C-S-c: calcd 26929, found 26924.

In situ enzyme screening

In a 96 well plate 20μ l of enzyme solution (in 5 mM MES, $2 \mathrm{mM} \mathrm{CaCl} 2, \mathrm{pH} 6.5,8 \mathrm{x}$ $10^{-5} \mathrm{mM}$), $40 \mu \mathrm{~L}$ of CHES buffer (70 mM CHES, 5 mM MES, $2 \mathrm{mM} \mathrm{CaCl}_{2}, \mathrm{pH} 9.5$) and $10 \mu \mathrm{~L}$ of the MTS reagent in acetonitrile (10 mM). The reactions were left at room temperature for 2 h . Residual thiol groups were tested by using Ellman's reagent. $10 \mu \mathrm{~L}$ of the reaction mixture was added to $60 \mu \mathrm{~L}$ of Ellmans reagent in Tris buffer ($\mathrm{pH} 8.6,0.375 \mathrm{mM}$). The plate was monitored at 414 nm 15 min later. The reaction was quenched with $10 \mu \mathrm{~L}$ of MES pH 6.5 buffer.

In a 96 well plate $5 \mu \mathrm{~L}$ of modified enzyme was added to $95 \mu \mathrm{~L}$ of Tris buffer (pH 8.6) containing 0.1 mM chromophoric substrate 4 and 5% DMSO. The absorbance was recorded every 30 s for 30 min at 410 nm .

Kinetic measurement

For amidase activity Michaelis-Menten constants were determined at $25{ }^{\circ} \mathrm{C}$ by curve fitting (GraFit 3.03) of the initial rate data determined at seven concentrations (0.01 $\mathrm{mM}-8.0 \mathrm{mM}$) of chromophoric substrate 4 in 0.1 M Tris- HCl buffer (0.005% Tween 80, 1\% DMSO, pH 8.6).

Data for in situ modification

No	Introduced modification	intial rate data $\left(\mathbf{M s}^{-1}\right)$	$\mathbf{k}_{\mathbf{c a t}} / \mathbf{K}_{\mathbf{M}}\left(\mathbf{M}^{-1} \mathbf{s}^{-1}\right)$ estimated
a	$3.79 \mathrm{e}-9 \pm 2.09 \mathrm{e}-9$	33.2 ± 18.8	

(2.13e-9 $\pm 2.06 \mathrm{e}-9{ }^{2}$

o	$-\xi_{\mathrm{s}-\mathrm{c}_{16}}$	$1.54 \mathrm{e}-10 \pm 1.73 \mathrm{e}-10$	1.35 ± 1.54
p	$-\xi_{\mathrm{s}}$	$1.24 \mathrm{e}-10 \pm 7.27 \mathrm{e}-11$	1.09 ± 0.65
q	Control	$-1.41 \mathrm{e}-10 \pm 5.45 \mathrm{e}-11$	-1.23 ± 0.26

Data for full Michaelis-Menten kinetics

Table 1: Full kinetic parameters for Wild Type SBL and CMMs

Enzyme	$\mathbf{V}_{\max }\left(\mathbf{M s}^{-\mathbf{1}}\right)$	$\mathbf{K}_{\mathbf{M}} \mathbf{(M)}$	$\mathbf{k}_{\text {cat }}\left(\mathbf{s}^{\mathbf{- 1}}\right)$	$\mathbf{k}_{\text {cat }} / \mathbf{K}_{\mathbf{M}}\left(\mathbf{M}^{-1} \mathbf{s}^{-1}\right)$
SBL-WT	$3.92 \mathrm{e}-8 \pm 3.08 \mathrm{e}-9$	0.0023 ± 0.0005	$7.00 \mathrm{e}-3$	3.04
S166c-g	$4.35 \mathrm{e}-8 \pm 4.28 \mathrm{e}-9$	0.0036 ± 0.0007	$7.77 \mathrm{e}-3$	2.16
S166c-e	$5.01 \mathrm{e}-8 \pm 4.72 \mathrm{e}-9$	0.0020 ± 0.0005	$8.95 \mathrm{e}-3$	4.47
S166c-a	$3.02 \mathrm{e}-9 \pm 4.21 \mathrm{e}-10$	0.0014 ± 0.0005	$5.39 \mathrm{e}-4$	0.39
S166c-c	$4.59 \mathrm{e}-8 \pm 3.59 \mathrm{e}-9$	0.0054 ± 0.0008	$8.17 \mathrm{e}-3$	1.51

References:

1. E. Wuensch, W. Graf, O. Keller, W. Keller, G. Wersin, Synthesis, 1986, 11, 958.
2. C. H. Hassall, J. O. Thomas, J. Chem. Soc., 1968, 4, 1495-1501.
