Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2004

Supplementary Information

Multiple functional group cooperation

in phosphate diester cleavage promoted by Zn(II) complexes

Monica Livieri,^a Fabrizio Mancin,^{*,a} Umberto Tonellato^a and Jik Chin^{*,b}

^a Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, I-35131 Padova, Italy. Fax: +39 0498275239; Tel: +39 0498275269; E-mail: umberto.tonellato@unipd.it

^b Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Canada. Fax: 946 7335; Tel: 946 7335; E-mail: jchin@chem.utoronto.ca

(Total 10 pages including this cover page)

Table of Contents

1.	Experimental procedures	S2
2.	Synthesis of ligands L2 and L3	S4
3.	Potentiometric titrations	S7
4.	NMR experiments	S9
5.	pH dependant kinetic profiles	S12

1. Experimental Procedures.

General: Solvents were purified by standard methods. All commercially available reagents and substrates were used as received. TLC analyses were performed using Merck 60 F₂₅₄ precoated silica gel glass plates. Column chromatography was carried out on Macherey-Nagel silica gel 60 (70-230 mesh). NMR spectra were recorded using a Bruker AC250F spectrometer operating at 250 MHz for ¹H and 62.9 MHz for ¹³C and a Bruker AV300 operating at 300 MHz for ¹H and 121.5 MHz for ³¹P. Chemical shifts are reported relative to internal Me₄Si. Multiplicity is given as follow: s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet, br = broad peak. Potentiometric titrations were performed using a Metrohom 716 DMS Titrino dynamic titrator. UV-Visible spectra and kinetic traces were recorded on Perkin Elmer Lambda 16 and Lambda 45 spectrophotometers equipped with thermostated multiple cell holders. Zn(NO₃)₂ was an analytical grade product. Metal ion stock solutions were titrated against EDTA following standard procedures. The buffer components were used as supplied by the manufacturers: acetic acid (Aldrich), 2morpholinoethanesulfonic acid (MES, Fluka), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, Sigma), 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic acid (EPPES, Sigma), 2-[Ncyclohexylamino]ethanesulfonic acid (CHES, Sigma),), 3-[cyclohexylamino]1-propanesulfonic acid (CAPS, Sigma). The bis-p-nitrophenyl phosphate sodium salt (BNP) was an Aldrich product, used as received. N-bis(2-pyridylmethyl)-1-hydroxy-3-propylamine¹ (L1) N-acetyl-N-(6-methylpyridin-2-yl)-acetamide was prepared as reported.²

Potentiometric titrations: Protonation constants and Zn(II) complex formation constants for ligands L1-L3 were determined by pH potentiometric titrations (25° C, 0.10 M NaCl). Solutions approximately $1 \cdot 10^{-3}$ M of the hydrochloride salts of the ligands and, when necessary, Zn(NO₃)₂ were titrated using a 0.1 M sodium hydroxide solution. The electrode system was calibrated by titrating a 0.01 M solution of HCl so that the pK_w value was 13.78. The pH and the volume of

added NaOH data were fitted with the computer program BEST³ to obtain the desired protonation and complex formation constants.

Kinetic Measurements. The kinetic traces were recorded on Perkin Elmer Lambda 16 and Lambda 45 spectrophotometers equipped with a thermostated multiple cell holders. Reaction temperature was maintained at 25±0.1 °C. The reactions were started by adding 20 µL of a $2.0 \cdot 10^{-2}$ M solution of substrate to a 2-mL solution of metal complex in the appropriate buffer and monitored by following the absorption of *p*-nitrophenoxide at 400 nm. Reactions were followed up to about 5% of substrate hydrolysis. The pseudo-first order rate constants (k_{ψ}) were obtained from the slope of the absorbance versus time data (the fit error was always less than 1%) divided by the molar absorbivity of the *p*-nitrophenoxide and the concentration of substrate. Apparent pH dependent second order rate constants (k'_2) were obtained by linear regression fitting of the k_{ψ} versus metal complex concentration data. Kinetic K_a^n values and second order rate constants (k_2) for the mono-deprotonated complexes were obtained by non-linear regression analysis of the apparent second order rate constants *vs*. pH data according to the equation: $k'_2 = k_2 \cdot (K_a^1 / [H^+] + 1 + [H^+] / K_a^2)$.

¹ M. J. Young, D. Wahnon, R. C. Hynes and J. Chin, J. Am. Chem. Soc., 1995, 117, 9441-9447.

² B. Abarca, A. Asensio, G. Jones and D. J. Mouat, *Tetrahedron* 1989, **45**, 7041-7048.

³ A. E. Martell and R. J.Motekaitis, *Determination and Use of Stability Constants*, 2nd ed.; VCH: New York, 1992.

2. Synthesis of ligands L2 and L3

Ligands L2 and L3 have been prepared according to Scheme S1.

2.1 Synthesis of N-(6-Bromomethyl-pyridin-2-yl)-acetamide (2)

14.42 g (75.09 mmol) of **1** and 17.72 g (27.7mmol) g of recristallized NBS were suspended in 200 mL of CCl₄ and the mixture was heated to reflux under N₂. for 8 hours. The reaction mixture was allowed to cool and diluted with CH₂Cl₂ (200 mL), the resulting mixture was extracted with a 5% solution of Na₂CO₃ and Na₂S₂O₃ (2 × 100 mL). The organic phase was dried with Na₂SO₄ and the solvent evaporated. The crude product was purified by flash chromatography (divided in two batches, silica gel, eluent: CH₂Cl₂/ AcOEt 97:3). After the chromatographic separation, the product is obtained as a mixture of mono- and di- acetylated derivatives.

The mixture was dissolved in 120 ml of TFA/CH₂Cl₂ 3:1 and stirred for 4 days. Saturated Na₂CO₃ was added to bring the pH of the mixture around 8, the organic phase was separated and the aqueous layer extracted with CH₂CH₂ (3×100 mL). The combined organic solutions were evaporated to yield 4.96 g (29%) of 2 as a white solid.

¹H-NMR (CDCl₃, 250 MHz), δ: 8.12 (d, 1H, 8 Hz), 7.88 (bs, 1H), 7.69 (t, 1H, 8 Hz), 7.14 (d, 1H, 8 Hz), 4.42 (s, 1H), 2.21 (s, 3H).

2.2 Synthesis of N-bis(6-acetamido-2-pyridylmethyl)-1-hydroxy-3-propylamine (3)

0.223 g (2.97 mmol) of 3-amino-1-propanol, 1.45 g (6.33 mmol) of **2** and 0.886 (6.41 mmol) of K_2CO_3 were suspended in 20 ml of dry CH₃CN and the resulting mixture was refluxed for 2.5 hours under N₂. The reaction mixture was allowed to cool, the unsoluble salts were filtered and washed with CH₃CN. The solvent was evaporated and the crude product purified by flash chromatography (silica gel, eluent: CH₂Cl₂/MeOH/NH₃ 90:10:1). 0.87 g (79%) of **3** were obtained as a white solid. ¹H-NMR (CDCl₃, 250 MHz), δ : 8.33 (bs, 2H), 8.00 (d, 2H, 8 Hz), 7.58 (t, 2H, 8 Hz), 7.02 (d, 2H, 8 Hz), 5.64 (bs, 1H), 3.69 (t, 2H, 7Hz), 3.63 (s, 4H), 2.64 (t, 2H, 7 Hz), 2.16 (s, 6H), 1.73 (qn, 2H, 7 Hz).

2.3 Synthesis of N-bis(6-amino-2-pyridylmethyl)-1-hydroxy-3-propylamine (L2)

0.396 g (1.07 mmol) of **3** were dissolved in 100 mL of 5 M NaOH in water/ethanol 1:1 and the resulting solution was refluxed overnight. The reaction mixture was allowed to cool, ethanol was removed at the rotary evaporator and the remaining aqueous solution was extracted with CHCl₃ (4 × 75 mL). The combined organic phases were extracted with saturated NaHCO3 (1 × 100 mL) and water (2 × 50 ml), dried over Na₂SO₄ and evaporated. 0.284 g (93%) of L2 were obtained as a brown oil.

¹H-NMR (CDCl₃, 250 MHz), δ: 7.40 (t, 2H, 8 Hz), 6.74 (d, 2H, 8 Hz), 6.35 (d, 2H, 8 Hz), 4.57 (bs,

4H), 3.75 (t, 2H, 7Hz), 3.62 (s, 4H), 2.69 (t, 2H, 7 Hz), 2.16 (s, 6H), 1.76 (qn, 2H, 7 Hz).

Elemental analysis, calcd. for C₁₅H₂₁N₅O (287.36): C 62.70, H 7.37; N 24.37%; found: C 62.15, H 7.22, N 24.12%.

ESI-MS (m/z): 288 [M⁺+H⁺]; 310 [M⁺+ Na⁺]; 326 [M⁺+K⁺].

2.4 Synthesis of N-bis(6-acetamido-2-pyridylmethyl)-propylamine (4)

0.115 g (1.94 mmol) of propylamine, 0.997 g (4.35 mmol) of **2** and 0.615 (5.80 mmol) of Na_2CO_3 were suspended in 20 ml of dry CH₃CN and the resulting mixture was refluxed for 8 hours under N₂. The reaction mixture was allowed to cool, the unsoluble salts were filtered and washed with

CH₃CN. The solvent was evaporated and the crude product purified by flash chromatography (silica gel, eluent: CH₂Cl₂/MeOH/NH₃ 20:1:0.1). 0.287g (42%) of **4** were obtained as a white solid. ¹H-NMR (CDCl₃, 250 MHz), δ: 8.12 (bs, 2H), 8.02 (d, 2H, 8 Hz), 7.64 (t, 2H, 8 Hz), 7.20 (d, 2H, 8 Hz), 3.65 (s, 4H), 2.45 (t, 2H, 7 Hz), 2.17 (s, 6H), 1.51 (m, 2H, 7 Hz), 0.83 (t, 2H, 7Hz).

2.5 Synthesis of N-bis(6-amino-2-pyridylmethyl)-1-hydroxy-3-propylamine (L3)

0.287 g (1.07 mmol) of **4** were dissolved in 100 mL of 5 M NaOH in water/ethanol 1:1 and the resulting solution was refluxed overnight. The reaction mixture was allowed to cool, ethanol was removed at the rotary evaporator and the remaining aqueous solution was extracted with CHCl₃ (4 × 75 mL). The combined organic phases were extracted with saturated NaHCO3 (1 × 100 mL) and water (2 × 50 ml), dried over Na₂SO₄ and evaporated. 0.214 g (98%) of L3 were obtained as a brown oil.

¹H-NMR (CDCl₃, 250 MHz), δ: 7.36 (t, 2H, 8 Hz), 6.89 (d, 2H, 8 Hz), 6.32 (d, 2H, 8 Hz), 4.51 (bs, 4H), 3.60 (s, 4H), 2.45 (t, 2H, 7 Hz),), 1.51 (m, 2H, 7 Hz), 0.83 (t, 2H, 7Hz).

Elemental analysis, calcd. for $C_{15}H_{21}N_5$ (271.36): C 66.39, H 7.80 N, 25.81%; found: C 66.65, H 7.48, N 25.35%.

ESI-MS (m/z): 272 [M⁺+H⁺]; 294 [M⁺+ Na⁺]; 310 [M⁺+K⁺].

3. Potentiometric titrations

Figure S1. Potentiometric titrations of L1·3HCl (\bullet) and L1·3HCl in the presence of one equivalent of Zn(NO₃)₂ 1:1 at 25° C. [L1] = 0.83 mM, [Zn(NO₃)₂] = 0.83 mM, [NaCl] = 0.1 M. a = number of added equivalents of NaOH, the lines report the calculated curves.

Figure S2. Potentiometric titrations of L2·3HCl (\bullet) and L2·3HCl in the presence of one equivalent of Zn(NO₃)₂ 1:1 at 25° C. [L2] = 0.75 mM, [Zn(NO₃)₂] = 0.75 mM, [NaCl] = 0.1 M. a = number of added equivalents of NaOH, the lines report the calculated curves.

Figure S3. Potentiometric titrations of L3·3HCl (\bullet) and L3·3HCl in the presence of one equivalent of Zn(NO₃)₂ 1:1 at 25° C. [L3] = 0.74 mM, [Zn(NO₃)₂] = 0.74 mM, [NaCl] = 0.1 M. a = number of added equivalents of NaOH, the lines report the calculated curves.

4. NMR experiments

Figure S4. ³¹P NMR spectra of a BNP solution (10% D₂O in H₂O) in the presence of L1·Zn(II) at pH 9.0 and 25 °C, 9 days (a) and 24 days (b) after mixing. [L1·Zn(II)] = 0.8 mM, [BNP] = 4 mM, [CHES buffer] = 0.05 M. The signals at -9.47 (triplet) and -15.43 (singlet) ppm correspond respectively the phosphorilated ligand and bis-*p*-nitrophenyl phosphate (BNP).

Figure S5. ³¹P NMR spectra of a BNP solution (10% D₂O in H₂O) in the presence of L2·Zn(II) at pH 9.0 and 25 °C, 2 days (a), 3 days (b), 9 days (c) and 21 days after mixing. [L2·Zn(II)] = 0.8 mM, [BNP] = 0.8 mM, [CHES buffer] = 0.05 M. The signals at -9.58 (triplet) and -15.43 (singlet) ppm correspond respectively to the phosphorilated ligand and bis-*p*-nitrophenyl phosphate (BNP).

Figure S6. ³¹P NMR spectra of a BNP solution (10% D₂O in H₂O) in the presence of L3·Zn(II) at pH 9.0 and 25 °C, 5 days 15 hours (a), 8 days (b), 14 days (c) and 174 days after mixing. $[L3 \cdot Zn(II)] = 0.8 \text{ mM}$, [BNP] = 2 mM, [CHES buffer] = 0.05 M. The two signals at -6.06 (singlet) and -15.43 (singlet) ppm correspond respectively to *p*-nitrophenyl phosphate and bis-*p*-nitrophenyl phosphate (BNP).

5. pH dependant kinetic profiles

Figure S7. pH dependence of the second order rate constant for the reaction between BNP and Zn(II) complexes of ligands L1 (\Box), L2 (\bullet), L3 (\circ) at 25° C ([buffer] = 5.0·10⁻² M). Inset: Zn(II) complexes of L1 (\Box) and L3 (\circ).