Supplementary Information

Low-valent Nb(III)-mediated synthesis of 1,1,2-trisubstituted-1*H*-indenes from aliphatic ketones and aryl-substituted alkynes

Yasushi Obora, Masahiro Kimura, Makoto Tokunaga and Yasushi Tsuji*

Catalysis Research Center and Division of Chemistry, Graduate School of Science,

Hokkaido University, Sapporo 060-0811, Japan

Materials: The reagents and the solvents were dried and purified before use by usual procedures.¹ NbCl₃(DME) was prepared according to the published method,² or can be purchased from Aldrich.

Analytical Procedures: All manipulations were performed under argon atmosphere in conventional Schlenk-type glasswares on a dual-manifold Schlenk line. NMR spectra were recorded on a Bruker ARX-400 (¹H, 400 Hz; ¹³C, 100 MHz). The mass spectra were measured on a Shimadzu QP-5050A (EI) and a JEOL JMS-700TZ (HRMS, EI). The GC analysis was made on a Shimadzu GC-17A equipped with an integrator (C-R8A) with a capillary column (CBP-1, 0.25 mm i.d. × 25 m). Elemental analysis was performed at the Center for Instrumental Analysis of Hokkaido University.

3b: ¹H NMR (CDCl₃) δ 0.50-0.59 (m, 2H), 0.73 (t, J = 7 Hz, 6H), 0.78-0.83 (m, 2H), 1.60-1.69 (m, 2H), 1.76-1.83 (m, 2H), 1.88 (d, J = 1 Hz, 3H), 6.42 (brs, 1H), 7.10-7.46 (m, 4H); ¹³C NMR (CDCl₃) δ 11.9 (CH₃), 14.9 (2CH₃), 17.0 (2CH₂), 40.2 (2CH₂), 58.7 (C), 119.9 (CH), 121.7 (CH), 124.0 (CH), 126.5 (CH), 126.9 (CH), 145.3 (C), 150.8 (C), 152.0 (C); MS (relative intensity) m/z 115 (26), 126 (13), 128 (46), 129 (52), 130 (12),

141 (29), 142 (14), 143 (100), 144 (12), 171 (11), 172 (12), 185 (40), 214 (M^+ , 44); HRMS calc. for $C_{16}H_{22}$: m/z 214.1721. Found m/z 214.1722.

3c: ¹H NMR (CDCl₃) δ 0.47-0.54 (m, 2H), 0.70-0.81 (m, 8H), 1.11-1.19 (m, 2H), 1.60-1.70 (m, 2H), 1.78-1.88 (m, 2H), 1.87 (d, J = 1 Hz, 3H), 6.44 (d, J = 1 Hz, 1H), 7.11-7.38 (m, 4H); ¹³C NMR (CDCl₃) δ 13.3 (CH₃), 14.3 (CH₃), 15.0 (CH₃), 17.0 (CH₂), 23.5 (CH₂), 25.8 (CH₂), 37.4 (CH₂), 40.3 (CH₂), 58.5 (C), 119.9 (CH), 121.7 (CH), 124.0 (CH), 126.5 (CH), 127.0 (CH), 145.3 (C), 150.7 (C), 152.0 (C); MS (relative intensity) m/z 115 (22), 126 (10), 128 (37), 129 (44), 141 (22), 142 (100), 144 (18), 157 (10), 185 (24), 199 (15), 228 (M⁺, 35); HRMS calc. for C₁₇H₂₄: m/z 228.1878. Found 228.1875. Anal. Calc. For C₁₇H₂₄: C, 89.41; H, 10.59. Found: C, 89.26; H, 10.47.

3d: ¹H NMR (CDCl₃) δ 0.77 (t, J = 7 Hz, 6H), 0.89-0.93 (m, 4H), 1.11-1.19 (m, 4H), 1.61-1.68 (m, 2H), 1.79-1.86 (m, 2H), 1.89 (d, J = 1 Hz, 3H), 6.45 (d, J = 1 Hz, 1H), 7.09-7.32 (m, 4H); ¹³C NMR (CDCl₃) δ 11.6 (CH₃), 14.3 (2CH₃), 23.5 (2CH₂), 25.8 (2CH₂), 37.6 (2CH₂), 58.4 (C), 119.9 (CH), 121.7 (CH), 124.0 (CH), 126.5 (CH), 127.0 (CH), 145.3 (C), 150.7 (C), 151.9 (C); MS (relative intensity) m/z 115 (16), 128 (36), 129 (42), 141 (20), 143 (100), 144 (28), 157 (15), 199 (21), 242 (M⁺, 25); HRMS calc. for C₁₈H₂₆: m/z 242.2035. Found m/z 242.2035. Anal. Calc. For C₁₈H₂₆: C, 89.19; H, 10.81. Found: C, 88.60; H, 10.36.

3e: 1 H NMR (CDCl₃) δ 0.35 (t, J = 7 Hz, 6H), 1.66-1.73 (m, 2H), 1.84-1.92 (m, 5H), 6.48 (s, 1H), 7.10-7.40 (m, 4H); 13 C NMR (CDCl₃) δ 8.3 (2CH₃) 13.1 (CH₃), 30.2 (2CH₂), 59.5 (C), 119.9 (CH), 121.7 (CH), 124.0 (CH), 126.5 (CH), 127.6 (CH), 145.8 (C), 149.9 (C), 151.0 (C); MS (relative intensity) m/z 115 (52), 128 (26), 129 (33), 141 (53), 142 (87), 143 (29), 157 (100), 158 (13), 171 (20), 186 (M⁺, 64); HRMS calc. for $C_{14}H_{18}$: m/z 186.1409. Found m/z 186.1402.

3f: ¹H NMR (CDCl₃) δ 1.27 (s, 3H), 1.80-1.86 (m, 2H), 2.00 (d, 3H, J = 1 Hz), 2.01-2.19 (m, 2H), 6.48 (d, 1H, J = 1 Hz), 7.04-7.34 (m, 9H); ¹³C NMR (CDCl₃) δ 13.1 (CH₃), 24.4 (CH₃), 30.7 (CH₂), 39.7 (CH₂), 54.3 (C), 120.4 (CH), 121.7 (CH), 124.4 (CH), 126.0 (CH), 126.9 (CH), 128.6 (2CH), 128.7 (3CH), 143.2 (C), 144.3 (C), 151.8 (C), 153.1 (C); HRMS calc. for C₁₉H₂₀: m/z 248.1565. Found m/z 248.1474.

3g: ¹H NMR (CDCl₃) δ 0.99-1.23 (m, 2H), 1.25 (s, 3H), 1.85-2.03 (m, 2H), 1.94 (d, J = 1 Hz, 3H), 3.28-3.37 (m, 2H), 6.41 (d, J=1 Hz, 1H), 7.13-7.27 (m, 4H); ¹³C NMR (CDCl₃) δ 13.0 (CH₃), 24.3 (CH₃), 27.6 (CH₂), 34.7 (CH₂), 46.0 (CH₂), 53.8 (C), 120.4 (CH), 121.6 (CH), 124.5 (CH), 126.2 (CH), 127.0 (CH), 144.1 (C), 151.6 (C), 152.9 (C); MS (relative intensity) m/z 115 (31), 127 (17), 128 (83), 129 (30), 141 (41), 142 (28), 143 (91), 144 (27), 157 (100), 158 (18), 220 (M⁺(³⁵Cl), 35), 222 (M⁺(³⁷Cl), 15); HRMS calc. for C₁₄H₁₇³⁵Cl: m/z 220.1019. Found m/z 220.1022.

3h: ¹H NMR (CDCl₃) δ 1.16 (t, J = 7 Hz, 3H), 1.25 (s, 3H), 1.47-1.55 (m, 1H), 1.67-1.73 (m, 1H), 1.91 (s, 3H), 2.00-2.08 (m, 1H), 2.15-2.22 (m, 1H), 3.98 (m, 2H), 6.41 (s, 1H), 7.05-7.45 (m, 4H); ¹³C NMR (CDCl₃) δ 12.5 (CH₃), 14.1 (CH₃), 23.6 (CH₃), 29.0 (CH₂), 31.6 (CH₂), 53.1 (C), 60.1 (CH₂), 120.0 (CH), 121.4 (CH), 124.1 (CH), 126.1 (CH), 126.7 (CH), 143.7 (C), 150.5 (C), 151.9 (C), 173.8 (C); MS (relative intensity) m/z 128 (27), 141 (31), 142 (12), 143 (20), 155 (11), 156 (100), 157 (25), 244 (M⁺, 17); HRMS calc. for C₁₆H₂₀O₂: m/z 244.1463. Found m/z 244.1463.

3i: ¹H NMR (CDCl₃) δ 0.70-0.79 (m, 8H), 0.90-1.00 (m, 2H), 1.28 (t, J = 7 Hz, 3H), 1.59-1.68 (m, 2H), 1.76-1.82 (m, 2H), 2.13 (q, J = 7 Hz, 2H), 6.46 (s, 1H), 7.08-7.30 (m, 4H); ¹³C NMR (CDCl₃) δ 11.9 (CH₃), 14.8 (2CH₃), 17.0 (2CH₂), 20.1 (CH₂), 40.6 (2CH₂), 58.9 (C), 120.0 (CH), 121.5 (CH), 123.9 (CH), 124.3 (CH), 126.5 (CH), 145.3 (C), 150.9 (C), 158.1 (C); MS (relative intensity) m/z 115 (36), 127 (13), 128 (50), 129 (100), 130

(11), 141 (40), 142 (14), 143 (62), 144 (12), 156 (63), 185 (21), 186 (20), 199 (66), 200 (11), 228 (M^+ , 56); HRMS calc. for $C_{17}H_{24}$: m/z 228.1878. Found m/z 228.1882. **3j:** ¹H NMR (CDCl₃) δ 0.51-0.59 (m, 2H), 0.72 (t, J = 6 Hz, 6H), 0.75-0.80 (m, 2H), 1.56-1.63 (m, 2H), 1.73-1.79 (m, 2H), 1.84 (d, J = 1 Hz, 3H), 2.38 (s, 3H), 6.37 (d, J = 1Hz, 1H), 6.98 (d, J = 7 Hz, 1H), 7.00 (s, 1H), 7.08 (d, J = 7 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.3 (CH₃), 14.9 (2CH₃), 17.0 (2CH₂), 22.0 (CH₃), 40.3 (2CH₂), 58.5 (C), 119.4 (CH), 122.7 (CH), 126.6 (CH), 127.1 (CH), 133.4 (C), 142.7 (C), 150.9 (C), 151.0 (C); MS (relative intensity) 115 (16), 128 (22), 129 (11), 141 (31), 142 (29), 143 (36), 144 (10), 155 (18), 156 (15), 157 (100), 158 (14), 185 (19), 186 (20), 199 (62), 200 (10), 228 (M⁺, 58); HRMS calc. for $C_{17}H_{24}$: m/z 228.1878. Found m/z 228.1871. **3k:** ¹H NMR (CDCl₃) δ 0.74 (t, J = 7 Hz, 6H), 0.80-0.98 (m, 4H), 1.60-1.70 (m, 2H), 1.80-1.91 (m, 5H), 6.46 (brs, 1H), 7.2-7.7 (m, 8H); 13 C NMR (CDCl₃) δ 13.5 (CH₃), 15.0 (2CH₃), 17.1 (2CH₂), 40.3 (2CH₂), 58.9 (C), 120.1 (CH), 120.6 (CH), 125.7 (CH), 127.1 (CH), 127.4 (CH), 127.5 (2CH), 129.1 (2CH), 137.1 (C), 142.5 (C), 144.7 (C), 151.5 (C), 152.8 (C); MS (relative intensity) m/z 95 (11), 101 (13), 107 (14), 115 (10), 191 (11), 202 (35), 203 (31), 204 (31), 205 (37), 206 (12), 215 (22), 217 (30), 218 (33), 219 (100), 220 (20), 247 (18), 248 (19), 261 (55), 262 (12), 290 (M^+ , 92); HRMS calc. for $C_{22}H_{26}$: m/z290.2034. Found *m/z* 290.2028. **31:** ¹H NMR (CDCl₃) δ 0.40 (t, J = 7 Hz, 6H), 1.74 (q, J = 7 Hz, 2H), 1.88-1.98 (m, 5H), 6.51 (brs, 1H), 7.2-7.7 (m, 8H); 13 C NMR (CDCl₃) δ 8.4 (2CH₃), 13.3 (CH₃), 30.3 (2CH₂), 59.6 (C), 120.0 (CH), 120.6 (CH), 125.8 (CH), 127.0 (CH), 127.3 (CH), 127.4 (2CH), 129.1 (2CH), 137.1 (C), 142.6 (C), 145.2 (C). 150.6 (C), 151.8 (C); MS (relative intensity) m/z 95 (14), 101 (16), 108 (19), 202 (26), 203 (23), 204 (10), 205 (10), 215 (16), 217 (24), 218 (64), 219 (22), 233 (100), 234 (20), 247 (31), 262 (M⁺, 76); HRMS calc. for

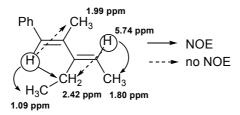
 $C_{20}H_{22}$: m/z 262.1721. Found m/z 262.1711.

3m: ¹H NMR (CDCl₃) δ 0.45-0.53 (m, 2H), 0.72 (t, J = 7 Hz, 6H), 0.75-0.82 (m, 2H), 1.69-1.77 (m, 2H), 1.89-1.97 (m, 2H), 2.00 (d, J = 1 Hz, 3H), 7.03 (d, J = 1 Hz, 1H), 7.42-7.52 (m, 3H), 7.66 (d, J = 8 Hz, 1H), 7.89 (d, J = 8 Hz, 1H), 8.06 (d, J = 8 Hz, 1H); NMR (CDCl₃) δ 13.6 (CH₃), 14.9 (2CH₃), 16.9 (2CH₂), 39.9 (2CH₂), 59.7 (C), 120.7 (CH), 124.1 (CH), 124.2 (CH), 124.4 (CH), 125.0 (CH), 125.6 (CH), 127.5 (C), 128.8 (CH), 133.3 (C), 141.1 (C), 147.8 (C), 152.8 (C); MS (relative intensity) m/z 165 (13), 178 (40), 179 (33), 180 (12), 189 (25), 190 (15), 191 (44), 192 (34), 193 (100), 194 (18), 221 (15), 222 (25), 235 (84), 236 (16), 264 (M⁺, 65); HRMS calc. for C₂₀H₂₄: m/z 264.1878. Found m/z 264.1888.

4a: ¹H NMR (CDCl₃) δ 0.93(t, J = 7 Hz, 6H), 1.46-1.61(m, 8H), 1.77(s, 3H), 6.63(s, 1H), 7.06(d, J = 7 Hz, 2H), 7.20-7.30(m, 3H); ¹³C NMR (CDCl₃) δ 15.0(2CH₃), 15.1(CH₃), 17.0(2CH₂), 42.6(2CH₂), 78.7(C), 124.8(CH), 126.4(CH), 128.4(2CH), 129.5(2CH), 139.0(C), 142.0(C). Stereostructure of **4a** was confirmed by NOESY spectrum. NOE correlation of olefinic proton (6.63 ppm) was observed with No NOE ortho-phenyl proton (7.06 ppm) and not with methyl proton (1.77 HO) NOE C₃H₇ ppm).

4a': ¹H NMR (CDCl₃) δ 0.91(t, J = 7 Hz, 6H), 1.40(d, J = 7 Hz, 3H), 1.42-1.51(m, 8H), 5.82(q, J = 7 Hz, 1H), 7.05(d, J = 7 Hz, 2H), 7.20-7.37(m, 3H); ¹³C NMR (CDCl₃) δ 14.8(2CH₃), 15.0(CH₃), 17.2(2CH₂), 42.1(2CH₂), 78.1(C), 122.0(CH), 127.0(CH), 128.4(2CH), 129.8(2CH), 139.8(C), 146.3(C). Stereostructure of olefinic proton (5.82 ppm) was observed with methyl proton (1.40 C₃H₇ OH NOE ppm) and not with *ortho*-phenyl proton (7.05 ppm).

5a: 1 H NMR (CDCl₃) δ 0.86-0.93(m, 6H), 1.27-1.30(m, 4H), 1.38-1.45(m, 2H), 2.09(q, J=7 Hz, 2H), 2.22-2.24(m, 2H), 2.29(s, 3H), 3.69(s, 3H), 5.75(t, J = 7 Hz, 1H), 5.81(s, 1H); 13 C NMR (CDCl₃) δ 13.9(CH₃), 14.0(CH₃), 16.2(CH₃), 22.8(CH₂), 22.9(CH₂), 27.6(CH₂), 30.6(CH₂), 31.1(CH₂), 50.8(CH₃), 114.1(CH), 135.6(CH), 144.8(C), 157.4(C), 168.0(C); HRMS calc. for C₁₄H₂₄O₂: m/z 224.1776. Found: m/z 224.1766. NOESY spectrum supported (E), (E)-structure of **5a** as shown below.


5a': ¹H NMR (CDCl₃) δ 0.85-0.92(m, 6H), 1.28-1.35 (m, 4H), 1.36-1.41 (m, 2H), 1.79(d, J = 7 Hz, 3H), 2.04(q, J = 7 Hz, 2H), 2.15 (t, J = 7 Hz, 2H), 3.76(s, 3H), 5.27(t, J = 7 Hz, 1H), 5.81(q, J = 7 Hz, 1H); ¹³C NMR (CDCl₃) δ 13.9(CH₃), 14.0(CH₃), 15.5(CH₃), 22.8(2CH₂), 28.0(CH₂), 30.2(CH₂), 30.8(CH₂), 51.5(CH₃), 127.9(CH), 129.7(CH), 137.4(C), 138.2(C), 169.7(C); HRMS calc. for C₁₄H₂₄O₂: m/z 224.1776. Found: m/z 224.1778.

NOESY spectrum supported (E), (E)-structure of 5a' as shown below.

5b: 1 H NMR (CDCl₃) δ 1.09(t, J=8 Hz, 3H), 1.80(d, J = 7 Hz, 3H), 1.99(d, J = 1 Hz, 3H), 2.42(q, J = 8 Hz, 2H), 5.74(q, J = 7 Hz, 1H), 6.60(s, 1H), 7.20-7.37(m, 5H); 13 C NMR

(CDCl₃) δ 14.0(CH₃), 14.3(CH₂), 16.3(CH₃), 21.1(CH₃), 121.6(CH), 125.3(CH), 126.4(CH), 128.2(2CH), 129.7(2CH), 138.2(C), 139.4(C), 144.8(C); HRMS calc. for C₁₄H₁₈: m/z 186.1409. Found m/z 186.1401.

NOESY spectrum supported (*E*), (*E*)-structure of **5b** as shown below.

References

- W. L. F. Armagego, D. D. Perrin, *Purification of Laboratory Chemicals*, 4th ed.,
 Butterworth-Heinemann, Oxford, UK, 1997.
- (2) E. J. Roskamp, S. F. Pedersen, *J. Am. Chem. Soc.*, 1987, **109**, 6551.