Electronic Supporting Information

Shuttling through reversible covalent chemistry

David A. Leigh* and Emilio M Pérez

School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK Fax: +44 0131 6679085; Tel: +44 131 650 4721; E-mail: David.Leigh@ed.ac.uk

Experimental procedure for the DA reaction: a solution of 0.025 g of E-1 (0.019 mmol) in 0.5 mL of d_6 -DMSO in a NMR tube was treated with ~10 eq. of freshly cracked and distilled cyclopentadiene. The solution was degassed with N₂ and the NMR tube sealed. This solution was heated at 80 °C for 16 hrs and then allowed to cool to room temperature, extracted with CHCl₃ and washed with water. The organic phase was dried over MgSO₄, the solvent evaporated under reduced pressure and the residue purified by column chromatography (silica, CHCl₃/MeOH 98:2) to yield Cp-1 as a colourless solid (90%). A similar procedure (8 h reaction time) was used to prepare Cp-2 (93%) from E-2. Experimental procedure for the r-DA reaction: 0.010 g of Cp-1 (0.007 mmol) in a glass vial were placed in the inlet oven of an FVP apparatus, then heated to 250°C under reduced pressure (10^{-2} Torr) for 20 minutes, to quantitatively yield E-1.

Physical data for Cp-1: Mp 180-182 °C; ¹H NMR (CDCl₃, 400 MHz, 298 K) δ 8.30 (s, 2H, H_{C or C'}), 8.27 (s, 2H, H_{C or C'}), 8.19 (m, 8H, H_{B and B'}), 7.60 (t, J = 7.8Hz, 4H, H_{A and A'}), 7.46 (bt, 4H, H_{D or D'}), 7.39 (bt, 4H, H_{D or D'}), 7.35-7.10 (m, 40 H, H_{Ph}), 7.03 (s, 8H, H_{F or F'}), 7.01 (s, 8H, H_{F or F'}), 6.38 (bt, 1H, H_{k or k'}), 6.31 (m, 3H, H_{k or k'}, H_{e and e'}), 6.15 (m, 2H, H₅ and H_{4'}), 6.05 (m, 2H, H_{h or h'} and H_{5'}), 5.85 (bt, 1H, H_{h or h'}), 5.59 (m, 1H, H₄), 4.64-4.35 (m, 20H, H_{E and E'} and H_{b and b'}), 4.19 (m, 4H, H_{a and a'} and H_{m and m'}), 3.96-3.67 (m, 4H, H_{I and I'}), 3.01-2.92 (m, 10H, H_{f and f'}, H_{g and g'}, H_{3'} and H_{6'}), 2.81 (s, 1H, H₆), 2.76 (s, 1H, H₃), 2.63 (m, 1H, H₂), 2.56 (dd, J = 3.8 Hz, J = 1.8 Hz, 1H, H_{2'}), 2.20 (d, J = 5.1 Hz, 1H, H_{I'}), 2.06 (d, J = 5.5 Hz, 1H, H_I), 1.61-1.08 (m, 52H, H_{alkyl}, H_{c and c'}, H_{d and d'}, H₇ and H_{7'});

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

¹³C NMR (CDCl₃, 100 MHz, 298 K) δ 174.7, 174.6, 174.2, 174.0, 173.8, 173.3, 172.0, 171.9, 166.5, 166.4, 157.8, 141.8, 141.4, 140.7, 140.6, 138.1, 137.7, 137.6, 137.4, 134.7, 134.0, 133.9, 133.8, 133.1, 132.2, 131.4, 131.3, 129.2, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 127.1, 127.0, 126.9, 126.7, 124.1, 124.0, 67.7, 67.6, 50.9, 50.7, 50.6, 50.4, 49.5, 48.8, 48.5, 48.3, 48.1, 45.1, 45.0, 44.3, 44.0, 43.9, 43.7, 39.9, 39.7, 39.6, 29.4, 29.3, 29.2, 29.1, 29.0, 28.7, 28,5, 26,8; HRMS calcd. for $C_{85}H_{94}N_7O_9$ [M + H⁺] 1356.71130 found (FAB, m-NBA matrix) 1356.71261.

Physical data for Cp-2: Mp 146-148 °C; ¹H NMR (CDCl₃, 400 MHz, 298 K) δ 7.35-7.18 (m, 20H, H_{Ph}), 6.34 (m, 2H, H_{k and k'}), 6.16 (m, 2H, H_{5 and 4'}), 6.06 (dd, J = 5.7 Hz, J = 2.7 Hz, 1H, H_{5'}), 5.82 (bt, 1H, H_{h or h'}), 5.76 (bt, 1H, H_{h or h'}), 5.66 (dd, J = 5.7 Hz, 2.7 Hz, H₄), 5.49 (bt, 2H, H_{e and e'}), 4.63 (d, J = 7.6 Hz, 4H, H_{b and b'}), 4.35 (t, J = 7.6 Hz, 2H, H_a), 4.23 (t, J = 8.1 Hz, 1H, H_{m or m'}), 4.19 (t, J = 8.1 Hz, 1H, H_{m or m'}), 4.01-3.71 (m, 4H, H_{l and l'}), 3.17 (m, 8H, H_{f and f'} and H_{g and g'}), 2.97 (s, 1H, H₆), 2.94 (s, 1H, H_{3'}), 2.85 (m, 2H, H₃ and δ), 2.80 (s, 1H, H₂), 2.58 (t, J = 6.9 Hz, 5H, H_{c and c'} and H_{l'}), 2.33 (t, J = 6.9 Hz, 4H, H_{d and d'}), 2.24 (dd, J = 5.5 Hz, J = 1.8 Hz, 1H, H₂), 2.21 (dd, J = 5.5 Hz, J = 1.8 Hz, 1H, H_l), 1.51-1.14 (m, 44H, H_{alkyl}, H₇ and H_{7'}); ¹³C NMR (CDCl₃, 100 MHz, 298 K) δ 174.6, 174.3, 173.5, 173.2, 172.8, 157.8, 141.8, 141.6, 141.0, 138.0, 137.7, 134.4, 134.0, 128.7, 128.6, 128.5, 128.1, 128.1, 128.0, 127.9, 126.9, 126.8, 126.7, 66.8, 50.9, 50.8, 50.7, 50.5, 49.8, 48.7, 48.6, 48.4, 48.3, 45.4, 45.1, 44.3, 43.8, 43.7, 39.6, 39.5, 31.0, 29.7, 29.6, 29.5, 29.4, 29.2, 26.8; HRMS calcd for C₅₃H₆₆N₃O₅ [M + H⁺] 824.50025 found (FAB, m-NBA matrix) 824.50116.