Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Electronic Supporting Information

Shuttling through reversible covalent chemistry

David A. Leigh* and Emilio M Pérez
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK Fax: +44 0131 6679085; Tel: +44 131650 4721; E-mail: David.Leigh@ed.ac.uk

Experimental procedure for the DA reaction: a solution of 0.025 g of $E-\mathbf{1}(0.019 \mathrm{mmol})$ in 0.5 mL of d_{6}-DMSO in a NMR tube was treated with ~ 10 eq. of freshly cracked and distilled cyclopentadiene. The solution was degassed with N_{2} and the NMR tube sealed. This solution was heated at $80{ }^{\circ} \mathrm{C}$ for 16 hrs and then allowed to cool to room temperature, extracted with CHCl_{3} and washed with water. The organic phase was dried over MgSO_{4}, the solvent evaporated under reduced pressure and the residue purified by column chromatography (silica, $\mathrm{CHCl}_{3} / \mathrm{MeOH} 98: 2$) to yield $\mathbf{C p} \mathbf{- 1}$ as a colourless solid (90\%). A similar procedure (8 h reaction time) was used to prepare $C p-2$ (93%) from $E-2$. Experimental procedure for the r-DA reaction: 0.010 g of $\mathrm{Cp}-\mathbf{1}(0.007 \mathrm{mmol})$ in a glass vial were placed in the inlet oven of an FVP apparatus, then heated to $250^{\circ} \mathrm{C}$ under reduced pressure (10^{-2} Torr) for 20 minutes, to quantitatively yield $E-1$.

Physical data for $\mathbf{C p - 1 : ~ M p ~ 1 8 0 - 1 8 2 ~}{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta 8.30$ (s, $\left.2 \mathrm{H}, \mathrm{H}_{C \text { or } C^{\prime}}\right), 8.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{C \text { or } C^{\prime}}\right), 8.19\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{B \text { and } B^{\prime}}\right), 7.60\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{A \text { and } A^{\prime}}\right)$, 7.46 (bt, 4H, $\mathrm{H}_{D \text { or } D^{\prime}}$), $7.39\left(\mathrm{bt}, 4 \mathrm{H}, \mathrm{H}_{D \text { or } D^{\prime}}\right), 7.35-7.10\left(\mathrm{~m}, 40 \mathrm{H}, \mathrm{H}_{P h}\right), 7.03\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{F \text { or }}\right.$ $\left.{ }_{F}\right)^{\prime}$, $7.01\left(\mathrm{~s}, 8 \mathrm{H}, \mathrm{H}_{F \text { or } F^{\prime}}\right), 6.38\left(\mathrm{bt}, 1 \mathrm{H}, \mathrm{H}_{k \text { or } k^{\prime}}\right), 6.31\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{k \text { or } k^{\prime}}, \mathrm{H}_{e \text { and } e^{\prime}}\right), 6.15(\mathrm{~m}, 2 \mathrm{H}$, H_{5} and $\left.\mathrm{H}_{4}\right), 6.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{h \text { or } h^{\prime}}\right.$ and $\left.\mathrm{H}_{5}\right)$, $5.85\left(\mathrm{bt}, 1 \mathrm{H}, \mathrm{H}_{h \text { or } h^{\prime}}\right), 5.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.64-$ $4.35\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{H}_{E \text { and } E^{\prime}}\right.$ and $\left.\mathrm{H}_{b \text { and } b^{\prime}}\right), 4.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{a \text { and } a^{\prime}}\right.$ and H_{m} and $\left.m^{\prime}\right), 3.96-3.67(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{H}_{l \text { and } l^{\prime}}\right), 3.01-2.92\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{f \text { and } f^{\prime}}, \mathrm{H}_{g}\right.$ and $g^{\prime}, \mathrm{H}_{3^{\prime}}$ and $\left.\mathrm{H}_{6^{\prime}}\right), 2.81\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 2.76(\mathrm{~s}, 1 \mathrm{H}$, $\left.\left.\mathrm{H}_{3}\right), 2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.56\left(\mathrm{dd}, \mathrm{J}=3.8 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right)^{\prime}\right), 2.20(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{l^{\prime}}\right), 2.06\left(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{l}\right), 1.61-1.08\left(\mathrm{~m}, 52 \mathrm{H}, \mathrm{H}_{\text {alkyl }}, \mathrm{H}_{c \text { and } c^{\prime}}, \mathrm{H}_{d \text { and } d^{\prime}}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{7}\right)$;

Supplementary Material for Chemical Communications This journal is © The Royal Society of Chemistry 2004
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta$ 174.7, 174.6, 174.2, 174.0, 173.8, 173.3, 172.0, $171.9,166.5,166.4,157.8,141.8,141.4,140.7,140.6,138.1,137.7,137.6,137.4,134.7$, $134.0,133.9,133.8,133.1,132.2,131.4,131.3,129.2,129.0,128.9,128.8,128.7,128.6$, 128.5, 128.1, 128.0, 127.9, 127.8, 127.1, 127.0, 126.9, 126.7, 124.1, 124.0, 67.7, 67.6, $50.9,50.7,50.6,50.4,49.5,48.8,48.5,48.3,48.1,45.1,45.0,44.3,44.0,43.9,43.7,39.9$, 39.7, 39.6, 29.4, 29.3, 29.2, 29.1, 29.0, 28.7, 28,5, 26,8; HRMS calcd. for $\mathrm{C}_{85} \mathrm{H}_{94} \mathrm{~N}_{7} \mathrm{O}_{9}$ [M $\left.+\mathrm{H}^{+}\right] 1356.71130$ found (FAB, m-NBA matrix) 1356.71261.

Physical data for Cp-2: Mp 146-148 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ § 7.35-7.18 $\left(\mathrm{m}, 20 \mathrm{H}, \mathrm{H}_{P h}\right), 6.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{k \text { and } k^{\prime}}\right), 6.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$ and $\left.4^{\prime}\right), 6.06(\mathrm{dd}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{~J}=2.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$), $5.82\left(\mathrm{bt}, 1 \mathrm{H}, \mathrm{H}_{h}\right.$ or $\left.h^{\prime}\right), 5.76\left(\mathrm{bt}, 1 \mathrm{H}, \mathrm{H}_{h}\right.$ or $\left.h^{\prime}\right), 5.66(\mathrm{dd}, \mathrm{J}=5.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}$, $\left.\mathrm{H}_{4}\right), 5.49\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{H}_{e \text { and } e^{\prime}}\right), 4.63\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{b \text { and } b^{\prime}}\right), 4.35\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{a}\right)$, $4.23\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{m \text { or } m^{\prime}}\right), 4.19\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{m \text { or } m}\right), 4.01-3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{l}\right.$ and ${ }^{\prime}$), $3.17\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{f \text { and } f^{\prime}}\right.$ and H_{g} and $\left.g^{\prime}\right), 2.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{6^{\prime}}\right), 2.94\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 2.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$ and 6), $2.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.58\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 5 \mathrm{H}, \mathrm{H}_{c}\right.$ and c^{\prime} and $\left.\mathrm{H}_{l^{\prime}}\right), 2.33\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{d}\right.$ and d^{\prime}), $2.24\left(\mathrm{dd}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 2.21\left(\mathrm{dd}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}\right)$, 1.51-1.14 ($\mathrm{m}, 44 \mathrm{H}, \mathrm{H}_{\text {alkyl }}, \mathrm{H}_{7}$ and H_{7}); ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 298 \mathrm{~K}\right) \delta 174.6$, $174.3,173.5,173.2,172.8,157.8,141.8,141.6,141.0,138.0,137.7,134.4,134.0,128.7$, $128.6,128.5,128.1,128.1,128.0,127.9,126.9,126.8,126.7,66.8,50.9,50.8,50.7,50.5$, $49.8,48.7,48.6,48.4,48.3,45.4,45.1,44.3,43.8,43.7,39.6,39.5,31.0,29.7,29.6,29.5$, 29.4, 29.2, 26.8; HRMS calcd for $\mathrm{C}_{53} \mathrm{H}_{66} \mathrm{~N}_{3} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right] 824.50025$ found (FAB, m-NBA matrix) 824.50116 .

