Novel α -functionally substituted amino acids: diphenylphosphinoglycines

Joachim Heinicke, Normen Peulecke and Peter G. Jones

Experimental details

All reactions were carried out under dry, oxygen-free argon, using Schlenk techniques and freshly distilled dry solvents. Diphenylphosphine and dicyclohexylphosphine were prepared from the corresponding chlorophosphines by reduction with LiAlH₄ in diethylether, other chemicals were purchased. Ethylene (99.5%, Air Liquide) was used without further treatment. NMR spectra were recorded on a multinuclear FT-NMR spectrometer ARX300 (Bruker) at 300.1 (¹H), 75.5 (¹³C), and 121.5 (³¹P) MHz. Shift references are tetramethylsilane for ¹H and ¹³C and H₃PO₄ (85%) for ³¹P. Proton or carbon nuclei of phenyl or cyclohexyl groups are denoted *i*, *o*, *m*, *p* and α , β , γ , δ , respectively. Coupling constants refer to J_{HH} in ¹H and J_{PC} in ¹³C NMR data unless stated otherwise. Assignments are supported by DEPT and in part by CH-COSY experiments. Mass spectra were measured on a single-focussing mass spectrometer AMD40 (Intectra). Melting points were determined with a Sanyo Gallenkamp melting point apparatus. TG/DTA was carried out with SETARAM TGDTA 92-16 (5 K/min, under nitrogen atmosphere) and elemental analyses with a CHNS-932 analyser from LECO using standard conditions.

N-tert-Butyl-diphenylphosphinoglycine-methanol-solvate (1·MeOH).

Glyoxylic acid hydrate (939 mg, 10.2 mmol) was dissolved in diethylether (10 mL; ultrasound bath) and added to a solution of diphenylphosphine (1.89 g, 10.2 mmol) and tertbutylamine (1.07 mL, 10.2 mmol) in diethylether (20 mL). Precipitation started immediately. After stirring for 24 hthe precipitate was filtered, was washed with diethylether and dried in vacuum. Crystallisation from a small amount of methanol furnished 3.25 g (92%) of 1.MeOH, mp. 123-125 °C (dec.). 1.MeOH is air sensitive and starts to decompose above 95 ° C: TG/DTG/DTA (15-250 °C): Δm (95-140 °C) = 22.3% (-MeOH, -CO₂ ber. 21.9%) with Δm_{max} at 120 °C and Δm_{sh}. At 100 and 140 °C, peak_{exoth} at 114 °C (m), 132 °C (w), peak_{exoth}. at 125 °C (st). ¹H NMR (d⁸-THF, CH-COSY, ref. THF & 1.72): & 0.96 (s, 9 H, CMe₃), 3.26 (s, 3 H, MeOH), 4.12 (d, ${}^{2}J_{PH} = 2.7$ Hz, 1 H, CH), 7.20-7.30 (m, 6 H, Ph), 7.50-7.65 (2m, 4 H, Ph). ¹³C{¹H} NMR (d⁸-THF, CH-COSY, 135 DEPT): δ 29.4 (CMe₃), 49.8 (MeOH), 52.5 (d, ¹II). C(11) Hund (d 1111, CH CODT, 100 DEL 1): C201 (check), 100 (LECH), 100 (1000), 1000 (1000), 10000, 1000), 10000 (1000), 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000 $(d, {}^{2}J_{PC} = 13.8 \text{ Hz}, \text{COO}^{-}). {}^{31}P{}^{1}H} \text{ NMR} (d^{8}\text{-THF}): \delta 3.4. \text{ Anal. calc. for}$ C₁₈H₂₂NO₂P·CH₃OH (347.40): C, 65.69; H, 7.54; N, 4.03. Found: C, 64.86; H, 7.77; N, 3.95. MS (EI, 70 eV, T = 260 °C), m/z (%): 315 (7) [M⁺], 270 (0.5) [M⁺-COOH], 187 (43), 186 (68) [Ph₂PH⁺], 185 (44), 183 (53), 108 (38), 107 (81), 106 (71), 84 (25), 75 (100). Storage of the d⁸-THF solution leads to decomposition, mainly by decarboxylation (δ (³¹P) – 15.7).

Diethylammonium-dicyclohexylphosphonium-bis(glycolate) (2).

Glyoxylic acid hydrate (345 mg, 3,75 mmol) was dissolved in diethylether (10 mL; ultrasound bath) and added to a solution of dicyclohexylphosphine (0.743 g, 3.75 mmol) and diethylamine (0.39 mL, 3.75 mmol) in diethylether (20 mL). Precipitation started immediately. After stirring for 24 h the precipitate was filtered, was washed with diethylether and dried in vacuum, yield 0.75 g (48%). ¹H NMR (D₂O): δ 1.20 (t, ³*J* = 7.3 Hz, 6 H, CH₃), 1.15-2.10 (m, 20 H, Cy), 2.50-2.80 (m, 2H, Cy), 2.99 (q, ³*J* = 7.3 Hz, 4 H, NCH₂), 5.17 (d, ¹*J* = 9.3 Hz, 1 H, PCH_A), 5.19 (d, ¹*J* = 9.9 Hz, 1 H, PCH_B). ¹³C {¹H} NMR (D₂O+d⁸-THF): δ 12.2 (CH₃), 26.8 (C-δ), 27.3-28.1 (m, C-γ, C-β), 31.8 (d, ¹*J* = 36.2 Hz, C-α), 32.7 (d, ¹*J* = 30.8 Hz, C-α), 43.9, 44.0 (NCH₂), 65.9 (d, ¹*J* = 33.5 Hz, PCH), 66.5 (d, ¹*J* = 33.7 Hz, PCH), 173.6 (COO⁻).³¹P {¹H} NMR (D₂O): δ 33.2 (A), 34.0 (B) (diastereoisomer pair A:B ca. 2:1). Anal. calc. for C₂₀H₃₈NO₆P (419.50): C, 57.26; H. 9.13; N, 3.34. Found: C, 57.45; H, 9.23; N, 3.20.

tert-Butylammonium-diphenylphosphinoglycolate (3).

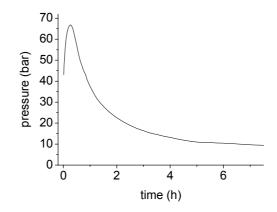
3 was formed on dissolution of **1·MeOH** in D₂O containing water. ¹H NMR (D₂O): δ 1.35 (s, 9 H, CMe₃), 3.34 (s, 3 H, *Me*OH), 5.09 (d, ²*J*_{PH} = 3.3 Hz, 1 H, CH), 7.38-7.45 (m, 6 H, Ph), 7.45-7.60 (m, 4 H, Ph). ¹³C{¹H} NMR (D₂O): δ 24.15, 24.20 (2s, *CMe*₃), 46.45, 46.47 (2d, *J*_{PC} = 2.0 Hz, *C*Me₃), 50.7 (*Me*OH), 71.1 (d, ¹*J*_{PC} = 23 Hz, CHOH), 126.1 (d, ³*J*_{PC} ≈ 8 Hz, *m*-CH), 126.2 (d, ³*J*_{PC} = 6.3 Hz, *m*-CH'), 126.4, 127.4 (2s, *p*-CH), 130.2 (d, ²*J*_{PC} = 17.1 Hz, *o*-CH), 132.0 (d, ²*J*_{PC} = 19.3 Hz, *o*-CH), 130.7 (d, ¹*J*_{PC} = 10.9 Hz, *i*-C), 133.0 (d, ¹*J*_{PC} = 11.2 Hz, *i*-C), 175.1 (d, ²*J*_{PC} = 8.0 Hz, COO). ³¹P{¹H} NMR (D₂O): δ = 6.7.

tert-Butylammonium-diphenylphosphinoylglycolate (4).

Aqueous H₂O₂ (122 µL, 30%) was added at 0 °C to a solution of **1·MeOH** (379 mg, 1.203 mmol) in water / THF (2:1). After 24 h the solvent was removed in vacuum, the sticky residue was washed with diethylether and dried, yield 350 mg (88%), mp. 177-179 °C. ¹H NMR (CDCl₃): $\delta = 1.18$ (s, 9 H, CMe₃), 4.79 (d, ²*J*_{PH} = 4.1 Hz, 1 H, CH), 7.34-7.50 (m, 6 H, Ph), 7.80-7.90 (m, 4 H, Ph), 8.2 (vbr, 3 H, OH, NH₂⁺); ¹H NMR (D₂O): $\delta 1.22$ (s, 9 H, CMe₃), 4.96 (d, ²*J*_{PH} = 6.1 Hz, 1 H, CH), 7.35-7.45 (m, 4 H, Ph), 7.45-7.53 (m, 2 H, H-*p*), 7.60-7.72 (m, 4 H, Ph). ¹³C{¹H} NMR (D₂O, d⁸-THF): $\delta 28.3$ (*CMe*₃), 53.6 (d, ³*J* = 6.1 Hz, *CMe*₃), 73.3 (d, ¹*J* = 79.2 Hz, CH), 130.5 (d, ³*J* = 11.7 Hz, 2 *m*-C), 130.8 (d, ¹*J* = 100.9 Hz, *i*-C), 133.0 (d, ²*J* = 9.3 Hz, *o*-C), 133.1 (d, ²*J* = 8.9 Hz, *o*-C'), 134.5 (d, ⁴*J* = 2.2 Hz, *p*-C), 134.6 (d, ⁴*J* = 2.2 Hz, *p*-C'), 174.3 (COO). ³¹P{¹H} NMR(CDCl₃): δ 32.0. Anal. calc. for C₁₈H₂₄NO₄P (349.37): C, 61.88; H, 6.92; N, 4.01. Found: C, 61.43, H, 6.62; N, 4.06.

N-tert-Butyl-diphenylthiophosphinoylglycine (5).

A mixture of sulphur (90.5 mg, 2.83 mmol) and a solution of **1·MeOH** (892.5 mg, 2.57 mmol) in THF (ca. 15mL) was stirred at room temperature for 12-15h. The solvent was removed in vacuum, and the residual white foam was treated with diethylether to give 0.55g (62%) of pure **5**, mp. 109-110 °C (dec.). DTG/DTA (15-250 °C, 5K/min, N₂): , $\Delta m_{117°C}$ 12.7% (–CO₂), max._{exoth}. 116-117 (st), max._{endoth}. 118-120 (st) °C. **5** is insoluble in D₂O, soluble in methanol, in CDCl₃ and in THF. ¹H NMR(CDCl₃): δ 1.28 (s, 9 H, CMe₃), 4.08 (d, ²*J*_{PH} = 10.7 Hz, 1 H, CH), 7.35-7.73 (m, 8 H, Ph), 8.52 (m, ³*J*_{PH} = 13.6, 2 H, Ph). ¹³C{¹H} NMR(CDCl₃): δ 27.2 (*CMe*₃), 57.3 (d, ³*J*_{PC} = 3.4 Hz, *CMe*₃), 57.5 (d, ¹*J*_{PC} = 39.7 Hz, CH), 128.4 (d, ³*J*_{PC} = 13.4 Hz, *m*-CH), 128.6 (d, ¹*J*_{PC} = 87.5 Hz, *i*-C), 129.0 (d, ³*J*_{PC} = 13.2 Hz, *m*-CH'), 129.2 (d, ¹*J*_{PC} = 85.2 Hz, *i*-C'), 132.1 (d, ²*J*_{PC} = 10.9 Hz, *o*-CH'), 132.5 (d, ⁴*J*_{PC} = 3.1 Hz, *p*-CH'), 133.0 (d, ²*J*_{PC} = 10.9 Hz, *o*-CH'), 164.8 (s, COO⁻). ³¹P{¹H} NMR(CDCl₃): δ 51.5. Anal. calc. for C₁₈H₂₂NO₂PS (347.42): C, 62.23; H, 6.38; N, 4.03. Found: C, 61.91; H, 6.36; N, 3.98%.


In CDCl₃ and in THF solution slow decarboxylation occurs: 50-60% of **5** were converted to Ph₂P(S)CH₂NH*t*Bu within 6 days at room temperature.

Ethylene oligomerisation

The technical equipment and details of the ethylene oligomerisation used here are the same as reported in J. Heinicke, M. Köhler, N. Peulecke, M. He, M. K. Kindermann, W. Keim, G. Fink, *Chem. Eur. J.* **2003**, *9*, 6093-6107.

a) A solution of **1·MeOH** (38 mg, 110 µmol) in THF (10 mL) was added at 0 °C to a solution of Ni(COD)₂ (34 mg, 124 µmol) in THF (10 mL). The mixture was stirred for 10 min at 0 °C and 30 min. at 20 °C (colour change to orange) and then added to the autoclave. The autoclave (75 mL, stainless steel) was pressurised with ethylene (p_{start} 30 bar, 8.1 g C₂H₄), closed, set in the preheated bath (100 °C) and heated for 15 h at 100 °C. After cooling and weight control unconverted ethylene was released through a cooling trap (conversion 85 %, TON 2230). THF and volatiles were flash distilled (1.5 Torr, bath up to 150 °C). The residue was stirred for 1 d with methanol / conc. hydrochloric acid (1:1), washed with water followed by methanol and then dried to give 5.2 g waxy polyethylene. ¹H NMR (in C₆D₅Br at 100 °C after swelling for 1 d at 120 °C under argon, acquisition time 4.9-5.4 s, delay 1.0 s, reference *p*-C<u>H</u> of the solvent δ = 7.23): α /internal olefins 93:7:%, methyl/olefin 1.5, average molar mass by ¹H NMR integration (similar to M_n) 1230 g·mol⁻¹, after extraction of oligomers with CH₂Cl₂ (10 mL) mp. 113-117 °C, d = 0.958 g·cm⁻³.

b) The experiment was performed as described in a) except use of toluene instead of THF and a higher initial pressure (p_{start} 50 bar, 14.4 g C₂H₄): conversion 12.7 g, 88 %, TON 4530, waxy polyethylene, ¹H NMR (in C₆D₅Br as above): α /internal olefins 90:10:%, methyl/olefin 1.3, average molar mass 900 g·mol⁻¹, mp. 115-118 °C (around the stirrer 120-123 °C), d = 0.933 g·cm⁻³. In this experiment the pressure-time plot was registered and shows the oligomerisation start after ca. 30 min. (thereof ca. 20 min. necessary to reach T_{intern} ca. 100 °C in the autoclave) and consumption of ca. 50% of C₂H₄ within one hour reaction time.

