Selective Attachment and Release of a Chemotherapeutic Agent from the Interior of a Protein Cage Architecture

Michelle L. Flenniken^{*a,d*}, Lars O. Liepold^{*b,d*}, Bridgid E. Crowley^{*b,d*}, Deborah A. Willits^{*c,d*}, Mark J. Young^{*c,d*}, and Trevor Douglas^{*b,d*}

^aDepartment of Microbiology, ^bDepartment of Chemistry and Biochemistry, ^cDepartment of Plant Sciences, ^dCenter for Bio-Inspired Nanomaterials, Montana State University, Gaines Hall, Bozeman MT, USA. Fax: 406-994-5407; Tel: 406-994-6566; E-mail: tdouglas@chemistry.montana.edu

Supplementary Information

Figure A. Dynamic Light Scattering (DLS) Data (Brookhaven 90Plus) demonstrating that the diameter of the HspG41C protein cage (A. HspG41C) does not change after linking doxorubicin to its interior surface (B. HspG41C-MalDox); 12.7 nm and 12.1 nm diameter respectively.