'Twisted' isophthalamide analogues

Simon J. Brooks, Louise S. Evans, Philip A. Gale,* Michael B. Hursthouse and Mark E. Light

^a School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. Fax: 44 2380596805; Tel: 44 238059 6805; E-mail: philip.gale@soton.ac.uk

DMSO solutions containing 1.0 mM receptor in the absence or presence of 10.0 mM tetrabutylammonium anion salts are shown in Figure 2. Compounds 1 and 2 undergo a light yellow to dark red colour change upon addition of fluoride anions, however, no significant colour change was observed upon addition of the other anions studied. Compound 3, shows a colour change from yellow to red with fluoride but also colour changes to orange with dihydrogen phosphate and benzoate, presumably reflecting the enhanced interaction with the oxo-anions by the more acidic receptor.

Figure S1 Compound 1 in DMSO in the absence of anions (far left) and presence of anions (10 equiv.) From second left to right – fluoride, chloride, bromide, dihydrogen phosphate, benzoate, hydrogen sulfate (added as tetrabutylammonium salts).

Figure S2 Compound **2** in DMSO in the absence of anions (far left) and presence of anions (10 equiv.) From second left to right – fluoride, chloride, bromide, dihydrogen phosphate, benzoate, hydrogen sulfate (added as tetrabutylammonium salts).

Figure S3 Compound **3** in DMSO in the absence of anions (far left) and presence of anions (10 equiv.) From second left to right – fluoride, chloride, bromide, dihydrogen phosphate, benzoate, hydrogen sulfate (added as tetrabutylammonium salts).

Figure 4 Comparison of compounds 1 (top row), 2 (middle row) and 3 (bottom row) in DMSO (1.0 mM) in the absence of anions (far left) and presence of anions (10 equiv.) From second left to right – fluoride, chloride, bromide, dihydrogen phosphate, benzoate, hydrogen sulfate (added as tetrabutylammonium salts).

Figure S5 The ¹H NMR spectrum of compound 1 in DMSO-d₆

Figure S6 The ¹³C NMR spectrum of compound **1** in DMSO-d₆

Figure S7 The ¹H NMR spectrum of compound **2** in DMSO-d₆

Figure S9 The ¹H NMR spectrum of compound **3** in DMSO-d₆

Figure S10 The ¹³C NMR spectrum of compound **3** in DMSO-d₆

N1,N3-bis(3,5-dimethoxyphenyl)-9,10-anthraquinone-1,3-dicarboxamide. 1

3,5-Dimethoxyaniline (1.90 g, 12.2 mmol), triethylamine (1.29 g, 12.8 mmol), DMAP (0.013 g, 0.1 mmol) and dichloromethane (80 mL) were placed in a 250 mL round bottomed flask and allowed to stir under N2 for 30 minutes. After a slow addition of anthraquinone-1,3-dicarbonyl chloride (2.02 g, 6.1 mol) the reaction was left stirring under N₂ overnight. The product was removed via filtration of reaction mixture and subsequently washed with both dichloromethane and water. The solvent was removed in *vacuo* to leave a pale yellow powder 1.23 g (35.6 %). ¹H NMR DMSO-d₆ (300 MHz): δ (ppm) 10.64 (s, 1H, NH), 10.31 (s, 1H, NH), 8.86 (d, 1H, J = 1.5 Hz, ar CH), 8.44 (d, 1H, J = 1.5 Hz, ar CH), 8.29 (m, 1H, ar CH), 8.19 (m, 1H, ar CH), 7.98 (m, 2H, ar CH), 7.13 (d, 2H, J = 2.2 Hz, o-aniline CH), 6.96 (d, 2H, J = 2.2 Hz, o-aniline CH), 6.31 (m, 2H, overlapping p-aniline ar CH), 3.76 (s, 6H, CH₃), 3.75 (s, 6H, CH₃). 13 C NMR DMSO-d₆ (75 MHz): δ (ppm) 181.7, 166.6, 163.0, 160.6, 160.4, 140.9, 140.3, 138.9, 138.6, 134.9, 134.8, 133.7, 133.4, 132.5, 132.0, 131.9, 127.1, 126.9, 126.8, 98.8, 97.8, 96.3, 96.5, 55.2, 55.1. LRMS (ES-): 601.2 (M+Cl)⁻, 1167.5 (2M+Cl)⁻. HRMS (ES-) (M+Cl)⁻ Calculated Mass: 601.1383. Observed Mass: 601.1365 ($\Delta = 2.9$ ppm) (ES+) (M+H)⁺ Calculated Mass: 567.1762. Observed Mass: 567.1758 ($\Delta = 0.6$ ppm). Melting Point (° C) Above 250.

N1,N3-diphenyl-9,10-anthraquinone-1,3-dicarboxamide. 2

Aniline (1.005 g, 10.8 mmol), triethylamine (1.205 g, 11.9 mmol), DMAP (0.008 g, 0.07 mmol) and dichloromethane (30 mL) were placed in a 100 mL round bottomed flask and allowed to stir under N₂ for 30 minutes. After a slow addition of anthraquinone-1,3diacarbonyl chloride (1.7830 g, 5.4 mol) the reaction was left stirring under N₂ overnight. The product was removed via filtration of the reaction mixture and subsequently washed with both dichloromethane and water. The solvent removed in vacuo to leave a pale yellow powder 1.0355 g (42.9 %). ¹H NMR DMSO-d₆ (300 MHz): δ (ppm) 10.75 (s, 1H, NH), 10.36 (s, 1H, NH), 8.89 (d, 1H, J = 1.9 Hz, ar CH), 8.47 (d, 1H, J = 1.9 Hz, ar CH), 8.29 (m, 1H ar CH), 8.19 (m, 1H, ar CH), 7.98 (m, 2H, ar CH), 7.82 (dd, 2 H, J = 8.7 & 1.1 Hz, o-aniline CH), 7.72 (d, 2H, J = 8.7 & 1.1 Hz, o-aniline CH), 7.40 (m, 4H, maniline CH), 7.14 (m, 2H, *p*-aniline CH). 13 C NMR DMSO-d₆ (75 MHz): δ (ppm) 181.8, 166.6, 163.0, 139.3, 139.1, 138.7, 138.6, 135.0, 134.8, 133.7, 133.4, 132.5, 132.1, 131.9, 128.8, 128.7, 127.1, 126.9, 126.9, 124.3, 123.6, 120.7, 119.5. LRMS (ES+) 447.1 (M+H)⁺, 893.3 (2M+H)⁺. HRMS (ES-) (M+Cl)⁻ Calculated Mass: 481.0960. Observed Mass: 481.0949 ($\Delta = 2.4$ ppm). (ES+) (M+H)⁺ Calculated Mass; 447.1339. Observed Mass : 447.1336 (Δ = 0.8ppm). Melting Point (° C) Above 250.

3,5-Dichloroaniline (1.92 g, 11.6 mmol), triethylamine (1.29 g, 12.8 mmol), DMAP (0.01 g, 0.08 mmol) and dichloromethane (80 mL) were placed in a 250 mL round bottomed flask and allowed to stir under N₂ for 30 minutes. After a slow addition of anthraquinone-1,3-dicarbonyl chloride (1.94 g, 5.8 mol) the reaction was left to stir under The product was removed via filtration of reaction mixture and N₂ overnight. subsequently washed with both dichloromethane and water. The solvent was removed in *vacuo* to leave a pale yellow powder 0.21 g (6.3 %). ¹H NMR DMSO-d₆ (300 MHz): δ (ppm) 10.99 (s, 1H, NH), 10.77 (s, 1H, NH), 8.89 (d, 1H, J = 1.5 Hz, ar CH), 8.45 (d, 1H, J = 1.5 Hz, CH), 8.28 (m, 1H, ar CH), 8.19 (m, 1H, ar CH), 7.98 (m, 2H, ar CH), 7.93 (d, 2H, J = 1.9 Hz, o-aniline ar CH), 7.76 (d, 2H, J = 1.9 Hz, o-aniline ar CH), 7.38 (m, 2H, overlapping *p*-aniline ar CH). ¹³C NMR DMSO-d₆ (75 MHz): δ (ppm) 181.8, 181.6, 167.1, 163.4, 141.5, 141.0, 138.5, 137.8, 135.1, 134.9, 134.3, 134.0, 133.5, 133.2, 132.5, 132.2, 132.0, 127.2, 127.2, 126.9, 123.5, 122.9, 118.7, 117.6. LRMS (ES-) 618.9 (M+Cl)⁻, 699.0 (M+2MeCN+Cl)⁻, 1202.5 (2M+Cl)⁻. HRMS (ES-) (M+Cl)⁻ Calculated Mass: 616.9402. Observed Mass: 616.9395 ($\Delta = 1.1$ ppm). Melting Point (° C) Above 250.

N1-(3,5-dimethoxyphenyl)-N3-(3-methoxy-5-methoxy)phenyl)isophthalamide 4.

3,5-Dimethoxyaniline (0.83g, 5.4mmol) was dissolved in dry dichloromethane (25 ml) under N₂. To this was added isophthaloyl dichloride (0.51 g, 2.5 mmol), DMAP (few mg), and triethylamine (0.75 g, 7.4 mmol), and the mixture stirred for 3 days. Solvent was removed *in vacuo* and compound was purified via recrystalliation from hot acetonitrile yielding needle like white crystals 0.42g (39 %). ¹H NMR DMSO-*d*₆ (300 MHz): 10.35 (s, 2H, N*H*), 8.49 (s, 1H, ar *CH*), 8.13 (d, 2H, ar *CH*), 7.69 (t, 1H, ar *CH*), 7.10 (s, 4H, ar *CH*), 6.28 (m, 2H, ar *CH*), 3.74 (s, 15H, *CH*₃). ¹³C NMR DMSO-*d*₆ (75 MHz): 165.1, 160.4, 140.7, 135.1, 130.7, 128.6, 126.9, 98.5, 95.8, 55.1. LRMS (ES⁻) 471.0 (M + Cl)⁻, 907.4 (2M + Cl)⁻. HRMS (ES⁺): 437.1705 (M⁻, Δ = 0.6ppm). Melting Point (° C) 242.

Figure S11 ORTEP plot of compound 1 (top) and packing diagram showing hydrogen bonding in the crystal (bottom).

Figure S12 ORTEP plot of compound **2** (top) and packing diagram showing hydrogen bonding in the crystal (bottom).

Figure S13 ORTEP plot of the tetrabutylammonium complex of compound 3 (counter cations, various hydrogen atoms and disorder omitted for clarity) (top), figure showing the two receptors in red and blue (centre) and the complex including counter cation (bottom).

#	Supplementary Material (ESI) for Chemical Communications
#	This journal is © The Royal Society of Chemistry 2005

D–H···A	d(D-H)	$d(\operatorname{H}^{\cdots}A)$	$d(D \cdots A)$	$\angle(DHA)$	
N1-H1F1	0.88	1.73	2.577(7)	160.2	
N2-H2F2	0.88	1.77	2.615(6)	159.2	
N3-H3F2	0.88	1.73	2.574(6)	159.5	
N4-H4AF1	0.88	1.74	2.594(7)	162.0	
Possible C–H…F hydr	ogen bonds				
C24–H24…F2	0.95	2.32	3.061(7)	134.8	
C13–H13…F2	0.95	2.17	3.062(9)	156.0	
C17–H17…F1	0.95	2.14	2.789(8)	134.1	
C41–H41…F1	0.95	2.12	3.034(8)	161.1	

Table S1 Hydrogen bonds [Å and $^{\circ}$] in the fluoride complex of **3**.

Figure S14 1 H NMR titration curves of compound 1 with anions

Figure S15 1 H NMR titration curves of compound **2** with anions

Figure S16 1 H NMR titration curves of compound **3** with anions

Figure S17 Version of Figure 2 (fluoride complex of **3**) from the communication with atom colours corresponding to elements.