Electronic Supplementary Information 2

A Facile and Versatile Preparation of Bilindiones and Biladienones from Tetraarylporphyrins

Takae Yamauchi,^a Tadashi Mizutani,^{*,b} Kenji Wada,^a Shoji Horii,^b Hirotaka Furukawa,^a Shigeyuki Masaoka,^a Ho-Chol Chang,^a and Susumu Kitagawa^a

^a Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto 615-8510 Japan

^b Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 Japan.

Figure S5. ¹H-¹H COSY of 2 (CDCl₃)

Table S1. β -protons and NH protons in the ¹H NMR spectra of 1 and 2 (CDCl₃)

	1	2	$\Delta \delta(1-2)$
Н-2	6.11 (m)	6.24 (dd)	-0.13
H-3	6.83 (d)	7.74 (dd)	-0.91
H-7	6.14 (d)	6.32 (d)	-0.18
H-8	6.72 (d)	6.68 (d)	0.04
H-12	6.44 (d)	6.50 (d)	-0.06
H-13	6.11 (m)	6.40 (d)	-0.29
H-17	6.11 (m)	6.07 (dd)	0.04
H-18	6.78 (dd)	6.80 (dd)	-0.02
NH ring A	10.75	7.2	3.55
NH ring D	9.87	9.78	0.09
NH ring B + C	12.46	10.86	1.6

 $\Delta \delta$ (1-2) is smaller than 0.25 except for H-3, H-13, NH_A, and NH_{B+C}. A similar trend was observed for ¹H NMR spectra of ZZ- and ZE-meso-butylbiladienone.

Protons	δ , ppm (multiplicity)			
	1^{a}	2	$\Delta \delta(1-2)$	
C-1	173.2			
C-2	124.4	125.7	-1.3	
C-3	137.7	127.2	+10.5	
C-4	139.4			
C-5	121.3 ^{<i>a</i>}			
C-6	164.6			
C-7	125.9	120.7	+5.2	
C-8	134.6	134.5	+0.1	
C-9	149.6			
C-10	142.7 ^{<i>a</i>}			
C-11	132.1			
C-12	125.3	126.3	-1.0	
C-13	111.3	117.9	-6.6	
C-14	149.7			
C-15	76.7			
C-16	142.5			
C-17	109.9	110.5	-0.6	
C-18	119.8	119.5	+0.3	
C-19	130.4			
C-20	184.6			

Table S2. C-13 signals assigned by HMQC and HMBC of 1 and 2 ($CDCl_3$)

^{*a*} Taken from the literature (ref 10).

Figure S6. ¹H-¹H COSY of 3 (CD₂Cl₂)

Figure S7. NOE of $3 (CD_2Cl_2)$

Figure S8. HMQC of **3** (CD₂Cl₂)

Figure S9. HMBC of **3** (CD_2Cl_2). Both of H-2 and H-3 (at 6.21 and 7.00 ppm) showed correlation with a resonance of the carbonyl C-1 at 171.4 ppm.

Figure S10. 1 H- 1 H COSY of **4** (CD₂Cl₂)

Figure S11. NOESY of **4** (CD₂Cl₂). H-17 at 7.0 ppm showed correlation with the phenyl proton at 7.3 ppm. N-H of the A-ring pyrrole showed correlation with the phenyl proton at 7.3 ppm. No NOE was observed between the phenyl protons and H-2 (6.09 ppm) and H-18 (6.25 ppm). Irradiation of other β -pyrrole protons caused NOE on the phenyl protons.