Reversible Michael addition of thiols as a new tool for dynamic combinatorial chemistry

Baolu Shi and Michael F. Greaney*

University of Edinburgh, School of Chemistry, Joseph Black Building, King's Buildings, West Mains Rd, Edinburgh EH9 3JJ, UK; E-mail: Michael.Greaney@ed.ac.uk

General

All reagents were purchased from commercial suppliers and used as received. Dichloromethane (DCM) was distilled from CaH₂. TLC was performed with Merck aluminium plates silica gel 60 F_{254} . Melting points were recorded on a Gallenkamp melting point instrument and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Bruker DPX360 MHz NMR spectrometer unless otherwise specified. Chemical shifts δ are quoted in ppm relative to the CDCl₃ signal as reference. Coupling constants are given in Hz. Mass spectra were obtained from EPSRC National Mass Spectrometery Service Centre, University of Wales, Swansea.

Syntheses of amide derivatives of ethacrynic acid 4b-4f

Ethacrynic acid (151.6 mg, 0.5 mmol), HOBt·H₂O (84.2 mg, 0.55 mmol), EDCI (105.4 mg, 0.55 mmol) and DIPEA (95 μ l, 0.55 mmol) were dissolved in DCM (10 mL) and the mixture stirred at room temperature for 10 minutes. The primary or secondary amine (0.75 mmol) and DIPEA (130 μ l, 0.75 mmol) were then added and the reaction left to stir at room temperature overnight. The reaction was worked up in the usual fashion, followed by flash column chromatography with DCM/EtOAc mixtures to yield the amides **4b** – **4f** as white solids (17-40% yields).

1-[2,3-Dichloro-4-(2-oxo-2-piperidin-1-yl-ethoxy)-phenyl]-2-ethyl-propenone 4b

 $R_f = 0.4$ (SiO₂, DCM:EtOAc 9:1); m.p. 79-80°C (DCM/EtOAc); ¹H NMR (360 MHz, CDCl₃) $\delta = 1.12$ (3H, t, J = 7.4, CH₃), 1.51-1.63 (6H, m, (CH₂)₃), 2.44 (2H, q, J = 7.4, CH₂), 3.49-3.54 (4H, m, N(CH₂)₂), 4.80 (2H, s, OCH₂), 5.58 (1H, s, vinyl), 5.91 (1H, s, vinyl), 6.95 (1H, d, J = 8.6, ArH), 7.11 (1H, d, J = 8.6, ArH); ¹³C NMR (91 MHz, CDCl₃) $\delta = 12.2$, 23.2, 24.2, 25.4, 26.4, 43.2, 46.4, 68.6, 110.5, 122.6, 126.9, 128.6, 131.1, 133.2, 150.0, 155.3, 164.7, 195.8; HRMS (ES+) calcd. for C₁₈H₂₅Cl₂N₂O₃ (MNH₄⁺): 387.1237, found: 387.1242.

1-[2,3-Dichloro-4-(2-morpholin-4-yl-2-oxo-ethoxy)-phenyl]-2-ethyl-propenone 4c

 $R_f = 0.4$ (SiO₂, DCM:EtOAc 6:4); m.p. 114-115°C (DCM/EtOAc); ¹H NMR (360 MHz, CDCl₃) $\delta = 1.11$ (3H, t, J = 7.4, CH₃), 2.44 (2H, q, J = 7.3, CH₂), 3.60-3.69 (8H, m, N(CH₂CH₂)₂O), 4.81 (2H, s, OCH₂), 5.57 (1H, s, vinyl), 5.93 (1H, s, vinyl), 6.95 (1H, d, J = 8.6, ArH), 7.13 (1H, d, J = 8.5, ArH); ¹³C NMR (91 MHz, CDCl₃) $\delta = 12.2$, 23.2, 42.4, 45.9, 66.6, 68.4, 110.5, 122.6, 126.9, 128.6, 131.3, 133.6, 150.0, 154.9, 165.1, 195.6; HRMS(ES+) calcd. for C₁₇H₂₃Cl₂N₂O₄ (MNH₄⁺): 389.1029, found: 389.1033.

{2-[2,3-Dichloro-4-(2-ethyl-acryloyl)-phenoxy]-acetylamino}-acetic acid methyl ester 4d

 $R_f = 0.4$ (SiO₂, DCM:EtOAc 8:2); m.p. 92-93°C (DCM/EtOAc); ¹H NMR (360 MHz, CDCl₃) $\delta = 1.09$ (3H, t, J = 7.3, CH₃), 2.41 (2H, q, J = 7.3, CH₂), 3.73 (3H, s, C(O)OCH₃), 4.11 (2H, d, J = 5.3, CH₂), 4.57 (2H, s, OCH₂), 5.53 (1H, s, vinyl), 5.90 (1H, s, vinyl), 6.81 (1H, d, J = 8.5, ArH), 7.13 (1H, d, J = 8.5, ArH); ¹³C NMR (91 MHz, CDCl₃) $\delta = 12.2$, 23.2, 40.7, 52.4, 67.9, 110.7, 122.9, 127.0, 128.7, 131.4, 134.1, 150.0, 154.3, 166.9, 169.5, 195.5; HRMS(ES+) calcd. for C₁₆H₂₁Cl₂N₂O₅ (MNH₄⁺): 391.0822, found: 391.0827.

2-[2,3-Dichloro-4-(2-ethyl-acryloyl)-phenoxy]-N-(2,2,2-trifluoro-ethyl)-acetamide 4e

 $R_f = 0.5$ (SiO₂, DCM:EtOAc 6:4); m.p. 110-111°C (DCM/EtOAc); ¹H NMR (360 MHz, CDCl₃) $\delta = 1.13$ (3H, t, J = 7.6, CH₃), 2.45 (2H, q, J = 7.6, CH₂), 4.04 (2H, m, NCH₂CF₃), 4.64 (2H, s, OCH₂), 5.57 (1H, s, vinyl), 5.95 (1H, s, vinyl), 6.85 (1H, d, J = 8.5, ArH), 7.18 (1H, d, J = 8.5, ArH). ¹³C NMR (91 MHz, CDCl₃) $\delta = 12.2$, 23.2, 40.1 (q, J = 34.6, CH₂CF₃), 67.9, 110.9, 122.9, 123.6 (q, J = 279.4, CH₂CF₃), 127.1, 128.8, 131.4, 134.3, 150.0, 154.0, 167.1, 195.4; HRMS(EI+) calcd. for C₁₅H₁₄Cl₂F₃NO₃ (M⁺): 383.0297, found: 383.0297.

1-[2,3-Dichloro-4-(2-oxo-2-pyrrolidin-1-yl-ethoxy)-phenyl]-2-ethyl-propenone 4f

 $R_f = 0.6$ (SiO₂, DCM:EtOAc 9:1); m.p. 119-120°C (DCM/EtOAc); ¹H NMR (360 MHz, CDCl₃) $\delta = 1.11$ (3H, t, J = 7.6, CH₃), 1.80-2.00 (4H, m, CH₂CH₂), 2.43 (2H, q, J = 7.6, CH₂), 3.46-3.56 (4H, m, N(CH₂)₂), 4.74 (2H, s, OCH₂), 5.59 (1H, s, vinyl), 5.91 (1H, s, vinyl), 6.92 (1H, d, J = 8.6, ArH), 7.11 (1H, d, J = 8.6, ArH); ¹³C NMR (91 MHz, CDCl₃) $\delta = 12.2$, 23.2, 23.6, 26.1, 46.0, 46.2, 68.9, 110.7, 122.6, 126.9, 128.6, 131.1, 133.3, 149.9, 155.4, 165.1, 195.8; HRMS(ES+) calcd. for C₁₇H₂₃Cl₂N₂O₃ (MNH₄⁺): 373.1080; found: 373.1081.

Synthesis of GSH-EA adduct 5a

To a stirred solution of ethacrynic acid (151.6 mg, 0.5 mmol) in aqueous DMF (2:1 $H_2O:DMF$, 30 mL) was added glutathione (230.5 mg, 0.75 mmol) and aqueous NaOH (7.5 mL, 0.1M). The

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

reaction was allowed to stir at r.t. and monitored by HPLC at regular intervals. Using a pH meter, the pH was maintained at *ca*. 8 through occasional titration of aq. NaOH solution.

After completion, the pH value was adjusted to 6 through the addition of 0.1 M aq. HCl. The mixture was concentrated *in vacuo* to produce the adduct **5a** as a white solid. ¹H NMR analysis (600 MHz, DMSO) indicated a 1:1 mixture of diastereoisomers.¹

Generation of dynamic combinatorial library (DCL)

An aqueous solution of reduced glutathione (GSH) (10 mM, 200 μ l), aqueous NaOH (10 mM, 200 μ l) and the five ethacrynic acid derivatives **4a** – **4e** (5x4 μ l, 0.1 M in DMSO) were added to aqueous DMSO (1:1 DMSO: H₂O, 2 mL). The reaction was allowed to stir at r.t. and monitored by HPLC at regular intervals. Using a pH meter, the pH was maintained at *ca*. 8 through occasional titration of aq. NaOH solution.

HPLC conditions: column Luna 5 μ C18(2) 30 × 4.60 mm, flow rate 2 mL min⁻¹, wavelength 254 nm, temperature 23 °C, gradient H₂O/MeCN (0.01% TFA) 95:5 over first 2 min, then 80:20 to 60:40 over 6 min, 60:40 to 5:95 over next 4 min.

¹ Van Iersel M. L. P. S.; van Lipzig, M. M. H.; Rietjens, I. M. C. M.; Vervoort, J.; van Bladeren P. J. *FEBS Lett.*, **1998**, 441, 153-157.

