Electronic Supplementary Information for

Direct mono-insertion of isocyanides into terminal alkynes catalyzed by rare-earth silylamides

Kimihiro Komeyama, * Daisuke Sasayama, Tomonori Kawabata, Katsuomi, Takehira, and Ken Takaki

Department of Chemistry and Chemical Engineering, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8527, Japan

E-mail: kkome@hiroshima-u.ac.jp

Methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 397.95 and 99.5 MHz , respectively. The stereochemistry of $\mathbf{3}$ was confirmed by NOE studies, and the ratio of syn and anti isomers was determined by ${ }^{13} \mathrm{C}$ NMR. Mass spectra (EI) were obtained at 70 eV on a GC-MS apparatus. Microanalyses were performed at our analytical laboratory. All reactions were carried out under argon.
Materials. Cyclohexane was distilled from sodium and stored under argon. The silylamide complexes were prepared by the reported method. ${ }^{1}$ The terminal alkynes, 1-dibenzylaminoprop-2-yne (1c), ${ }^{2}$ propargyloxy-tert-butyldimethylsilane (1d), ${ }^{3}$ 1-ethynyl-4-methoxybenzene $\quad(\mathbf{1 f})^{4}$, 1-ethynyl-4-bromobenzene $\quad(\mathbf{1 g})^{4}, \quad$ and 1-ethynyl-4-(1,3-dioxoranyl)benzene ($\mathbf{1} \mathbf{h})^{5}$ were obtained according to the literatures. Isocyanides, 2a-e, were prepared based on the reported procedure. ${ }^{6}$ All other materials were commercially available and used after drying and purification.

Representative experimental procedure. All reactions were carried out under Ar atmosphere. A solution of $\mathbf{1 a}(99 \mu \mathrm{~L}, 0.67 \mathrm{mmol}), \mathbf{2 e}(125 \mathrm{mg}, 0.67 \mathrm{mmol})$, and amylamine ($15.4 \mu \mathrm{~L}, 0.134 \mathrm{mmol}$) in cyclohexane $(0.7 \mathrm{~mL})$ was added into $\operatorname{Sm}(\mathrm{btsa})_{3}(42$ $\mathrm{mg}, 0.067 \mathrm{mmol})$. After 9 h of stirring at room temperature, the reaction mixture was quenched with distilled water and ether. Yield of 3ae was measured by gas chromatography with dimethyl terephthalate as an internal standard. After extraction with ether, the combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo. Kugelrohr distillation of the mixture $\left(250{ }^{\circ} \mathrm{C} / 10^{-2}\right.$ mmHg) gave 1-(2,6-diisopropylphenylimino)non-2-yne (3ae) ($117 \mathrm{mg}, 59 \%$) as a yellow oil mixture of the syn and anti-isomers (65/35). MS $m / z(70 \mathrm{eV}) 297\left(\mathrm{M}^{+}, 36\right), 282(100)$, $212(35) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti isomer: $\delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.01-1.49(18 \mathrm{H}, \mathrm{m})$, $1.61-1.69(2 \mathrm{H}, \mathrm{m}), 2.46(2 \mathrm{H}, \mathrm{dt}, J=1.5,7.2 \mathrm{~Hz}), 2.92(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}), 7.03-7.14$
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
$(3 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}) ;$ syn isomer (assignable peaks only): $\delta 0.84(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 1.01-1.49(18 \mathrm{H}, \mathrm{m}), 2.14(2 \mathrm{H}, \mathrm{dt}, J=1.4,6.9 \mathrm{~Hz}), 2.82(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz})$, 7.03-7.14 $(3 \mathrm{H}, \mathrm{m}), 7.84(1 \mathrm{H}, \mathrm{t}, J=1.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ anti isomer: $\delta 14.01,19.5$, $22.5,23.5,27.71,27.86,28.0,31.3,78.9,97.0,123.0,124.6,137.5,147.1,148.6$. syn isomer: $\delta 14.05,19.0,22.4,23.3,27.67,27.84,28.7,31.2,76.5,100.3,122.7,124.1$, 136.3, 145.2, 147.3. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}: \mathrm{C}, 84.79 ; \mathrm{H}, 10.50 ; \mathrm{N}, 4.71$. Found: C, 84.89; H, 10.62; N, 4.49.

Analytical data of the products 3.

1-(2,6-Dimethylphenylimino)non-2-yne (3ac). Isolated as a yellow oil ($78 \mathrm{mg}, 30 \%$, anti/syn $=54 / 46)$ by vacuum distillation $\left(150-160{ }^{\circ} \mathrm{C} / 10^{-2}\right.$ Torr). MS $m / z 242\left(\mathrm{M}^{+}, 11\right)$, 241 (65), 184 (82), $170(100) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) anti-isomer: $\delta 0.86(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.10-1.33(6 \mathrm{H}, \mathrm{m}), 1.41-1.48(2 \mathrm{H}, \mathrm{m}), 2.06(6 \mathrm{H}, \mathrm{s}), 2.14(2 \mathrm{H}, \mathrm{dt}, J=1.6,6.8 \mathrm{~Hz})$, 6.88-6.95 ($1 \mathrm{H}, \mathrm{m}$), $7.00(2 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz})$; syn-isomer (assignable peaks only): $\delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.60-1.67(2 \mathrm{H}, \mathrm{m}), 2.12(6 \mathrm{H}, \mathrm{s}), 2.44$ $(2 \mathrm{H}, \mathrm{dt}, J=1.6,7.2 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 14.0,17.8,19.5,22.5,27.7,27.9,31.2,78.9,97.2,124.2,126.9$, 128.0, 144.83, 147.7, 150.8; syn-isomer: $\delta 14.0,18.2,19.0,22.4,27.9,28.6,31.3,76.0$, $99.5,123.4,125.8,127.6,144.76,147.7,149.6$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 84.59 ; \mathrm{H}$, 9.60; N; 5.80. Found: C, 84.45; H, 9.94; N, 5.60.

1-(2,4,6-Trimethylphenylimino)non-2-yne (3ad). Isolated as a yellow oil (94 mg, 57%, anti/syn $=55 / 45)$ by vacuum distillation $\left(170-180^{\circ} \mathrm{C} / 10^{-2} \mathrm{Torr}\right)$. MS $m / z 255\left(\mathrm{M}^{+}\right.$, 31), 198 (28), 184 (43), 146 (20), 29 (100). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 0.87(3 \mathrm{H}, \mathrm{t}$, $J=7.2 \mathrm{~Hz}), 1.11-1.33(6 \mathrm{H}, \mathrm{m}), 1.41-1.48(2 \mathrm{H}, \mathrm{m}), 2.09(6 \mathrm{H}, \mathrm{s}), 2.16(2 \mathrm{H}, \mathrm{dt}, J=1.6,6.8$ $\mathrm{Hz}), 2.26(3 \mathrm{H}, \mathrm{s}), 6.85(2 \mathrm{H}, \mathrm{s}), 7.42(1 \mathrm{H}, \mathrm{t}, J=1.6 \mathrm{~Hz})$; syn-isomer: $\delta 0.91(3 \mathrm{H}, \mathrm{t}, J=7.1$ $\mathrm{Hz}), 1.11-1.33(6 \mathrm{H}, \mathrm{m}), 1.59-1.67(2 \mathrm{H}, \mathrm{m}), 2.03(6 \mathrm{H}, \mathrm{s}), 2.26(3 \mathrm{H}, \mathrm{s}), 2.44(2 \mathrm{H}, \mathrm{dt}, J=1.5$, $7.2 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{s}), 7.76(1 \mathrm{H}, \mathrm{t}, J=1.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 14.01$, $18.2,19.1,20.66,22.5,27.8,28.01,31.3,76.2,99.3,126.9,128.7,132.6,144.9,147.1$; syn-isomer: $\delta 14.04,17.8,19.5,20.69,22.4,27.97,28.6,31.2,79.0,96.9,125.7,128.3$, 133.5, 147.7, 148.4. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}: \mathrm{C}, 84.65 ; \mathrm{H}, 9.87$; N, 5.48. Found: C, 84.46; H, 9.92; N, 5.62.

1-(2,6-Diisopropylphenylimino)-4,4-dimethylpent-2-yne (3be). Isolated as a yellow oil ($152 \mathrm{mg}, 53 \%$, syn/anti $=57 / 43$) by vacuum distillation $\left(140^{\circ} \mathrm{C} / 10^{-2} \mathrm{Torr}\right)$. MS m / z $269\left(\mathrm{M}^{+}, 69\right), 254(100), 212(74) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ syn-isomer: $\delta 0.95(9 \mathrm{H}, \mathrm{s}), 1.16$ $(12 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 2.92(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}), 7.01-7.13(3 \mathrm{H}, \mathrm{m}), 7.79(1 \mathrm{H}, \mathrm{s}) ;$ anti-isomer: $\delta 1.14(12 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.35(9 \mathrm{H}, \mathrm{s}), 2.81(2 \mathrm{H}$, sept, $J=7.0 \mathrm{~Hz})$, 7.01-7.13 (3H, m), $7.40(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ syn-isomer: $\delta 22.4,23.6,27.6,29.9$, 75.2, 104.3, 122.6, 124.0, 137.5, 145.4, 147.6; anti-isomer: $\delta 22.6,(23.3,23.5), 27.8,30.4$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
77.4, 107.8, 122.9, 124.6, 136.1, 147.1, 148.6. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}: \mathrm{C}, 84.70 ; \mathrm{H}$, 10.10; N, 5.20. Found: C, 84.67; H, 10.26; N, 5.01.

3- N, N-Dibenzylamino-1-(2,6-Diisopropylphenylimino)prop-2-yne (3ce). Isolated as an orange oil ($158 \mathrm{mg}, 40 \%$, syn/anti $=70 / 30$) by MPLC on alumina with hexane containing 2% of ethylacetate. $\mathrm{R}_{f}=0.43$. Mass data was not obtained. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ syn-isomer: $\delta 1.18-1.28(12 \mathrm{H}, \mathrm{m}), 2.91(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}), 3.21(2 \mathrm{H}, \mathrm{d}, J=1.2$ $\mathrm{Hz}), 3.23(4 \mathrm{H}, \mathrm{s}), 7.12-7.44(13 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz})$; anti-isomer: $\delta 1.18-1.28$ $(12 \mathrm{H}, \mathrm{m}), 2.94(2 \mathrm{H}, \mathrm{sept}, J=6.9 \mathrm{~Hz}), 3.53(2 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 3.78(4 \mathrm{H}, \mathrm{s}), 7.12-7.44$ $(13 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ syn-isomer: $\delta 22.4,23.2,23.50$, $23.54,28.1,41.5,57.0,80.7,93.8,123.0,124.5,127.1,128.2,128.9,136.2,138.4,144.6$. 147.8; anti-isomer (assignable peaks only): $\delta 27.8,42.2,57.8,83.6,90.8,123.1,124.8$, 127.3, 128.4, 129.0, 137.4, 138.5, 146.4, 148.6. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2}: \mathrm{C}, 85.26 ; \mathrm{H}$, 8.11; N, 6.63. Found: C, 85.01; H, 8.18; N, 6.81.

1-(2,6-Diisopropylphenylimino)-4-(tert-butyldimethylsilyloxy)but-2-yne (3de).

 Isolated as an orange oil ($106 \mathrm{mg}, 76 \%$, anti/syn $=63 / 37$) by vacuum distillation $(>250$ ${ }^{\circ} \mathrm{C} / 10^{-2}$ Torr). MS m/z $357\left(\mathrm{M}^{+}, 94\right), 342(100) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 0.19$ $(6 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}, \mathrm{s}), 1.17(12 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 2.91(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}), 4.58(2 \mathrm{H}, \mathrm{s})$, 7.08-7.18 ($3 \mathrm{H}, \mathrm{m}$), $7.47(1 \mathrm{H}, \mathrm{s}) ;$ syn-isomer (assignable peaks only): $\delta-0.06(6 \mathrm{H}, \mathrm{s}), 0.82$ $(9 \mathrm{H}, \mathrm{s}), 2.83(2 \mathrm{H}$, sept, $J=6.8 \mathrm{~Hz}), 4.26(2 \mathrm{H}, \mathrm{s}), 7.08-7.18(3 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta-5.22,18.3,23.5,25.8,27.7,52.0,82.4,92.9,123.0,124.8$, 137.3, 146.3, 148.5; syn-isomer: $\delta-5.49,18.1,23.4,25.6,27.9,51.5,79.2,96.4,122.8$, 136.1, 144.1, 146.9. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NOSi}: \mathrm{C}, 73.89 ; \mathrm{H}, 9.87 ; \mathrm{N}, 3.92$. Found: C, 74.00; H, 9.90; N, 4.12.1-(2,6-Diisopropylphenylimino)-3-phenylprop-2-yne (3ee). Isolated as a yellow oil ($126 \mathrm{mg}, 60 \%$, anti/syn $=58 / 42$) by vacuum distillation ($>250{ }^{\circ} \mathrm{C} / 10^{-2}$ Torr). MS m / z $289\left(\mathrm{M}^{+}, 82\right), 274(95), 115(100) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 1.19(12 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}), 2.98(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}$), 7.12-7.64 ($8 \mathrm{H}, \mathrm{m}$), $7.65(1 \mathrm{H}, \mathrm{s})$; syn-isomer (assignable peaks only): $\delta 2.89(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{s}){ }^{13}{ }^{13} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: δ 23.6, 27.8, 86.8, 94.0, 120.8, 123.1, 124.9, 128.5, 129.9, 132.5, 137.5, 146.8, 148.6; syn-isomer: $\delta 23.5,27.9,83.8,97.3,121.1,122.7,124.3,128.4,129.8,132.3,136.5$, 144.8, 147.4. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}: \mathrm{C}, 87.15 ; \mathrm{H}, 8.01 ; \mathrm{N}, 4.84$. Found: C, 86.91; H, 8.06; N, 5.10.

1-(2,6-Diisopropylphenylimino)-3-(4-methoxyphenyl)prop-2-yne (3fe). Isolated as a yellow oil ($48 \mathrm{mg}, 18 \%$, anti/syn $=58 / 42$) by vacuum distillation $\left(>250^{\circ} \mathrm{C} / 10^{-2} \mathrm{Torr}\right)$. MS m/z $319\left(\mathrm{M}^{+}, 82\right), 304(100), 276(45) .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) anti-isomer: $\delta 1.185(12 \mathrm{H}$, d, $J=6.8 \mathrm{~Hz}), 3.00(2 \mathrm{H}$, sept, $J=6.8 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 6.71-7.58(7 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{s}) ;$ syn-isomer: $\delta 1.176(12 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \operatorname{sept}, J=6.8 \mathrm{~Hz}), 3.71(3 \mathrm{H}, \mathrm{s})$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is © The Royal Society of Chemistry 2005
6.71-7.58 (7H, m), 8.04 (1 $\mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\oint 23.5,27.7,55.14,86.2$, $94.6,113.0,114.10,122.9,124.7,134.1,137.4,146.7,148.7,160.81$; syn-isomer: $\delta 23.4$, $27.8,55.08,83.5,98.1,112.6,113.98,122.6,124.1,134.0,136.5,144.8,147.5,160.76$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 82.72$; H, 7.89; N, 4.38. Found: C, 82.78; H, 8.12; N, 4.67.

1-(2,6-Diisopropylphenylimino)-3-(4-bromophenyl)prop-2-yne (3ge). Isolated as a yellow solid ($144 \mathrm{mg}, 60 \%$, anti/syn $=62 / 38$) by vacuum distillation $\left(250{ }^{\circ} \mathrm{C} / 10^{-2} \mathrm{Torr}\right)$. MS $m / z 369\left(\mathrm{M}^{+}+1,46\right), 368\left(\mathrm{M}^{+}, 38\right), 367\left(\mathrm{M}^{+}-1,39\right), 173(100) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 1.19(12 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.96(2 \mathrm{H}$, sept, $J=6.8 \mathrm{~Hz}), 6.93-6.96$ ($1 \mathrm{H}, \mathrm{m}$), 7.10-7.17 (3H, m), 7.36-7.39 (1H, m), 7.47-7.54 ($2 \mathrm{H}, \mathrm{m}$), $7.63(1 \mathrm{H}, \mathrm{s})$; syn-isomer: $\delta 1.16(12 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 2.86(2 \mathrm{H}$, sept, $J=7.0 \mathrm{~Hz}), 6.93-6.96(1 \mathrm{H}, \mathrm{m})$, 7.10-7.17 (3H, m), 7.36-7.39 (1H, m), 7.47-7.54 ($2 \mathrm{H}, \mathrm{m}$), $8.07(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 23.5(\mathrm{~m}), 27.9(\mathrm{~m}), 87.7,92.7,120.2,123.1,124.5,131.9(\mathrm{~m})$, 133.8 (m), 137.4, 146.4, 146.6, 148.6; syn-isomer: 823.5 (m), 27.9 (m), 84.7, 96.0, 119.7, 122.8, 125.0, 131.9 (m), 133.8 (m), 136.5, 144.5, 144.6, 147.4. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN}: \mathrm{C}, 68.48 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.80$. Found: C, $68.42 ; \mathrm{H}, 5.85 ; \mathrm{N}, 3.72$.

1-(2,6-Diisopropylphenylimino)-3-[4-(1,3-dioxolanyl)phenyl]prop-2-yne (3he). Isolated as a yellow oil ($305 \mathrm{mg}, 68 \%$, anti/syn $=62 / 38$) by vacuum distillation $\left(>250{ }^{\circ} \mathrm{C}\right.$ / 10^{-2} Torr). MS $m / z 361\left(\mathrm{M}^{+}, 75\right), 360(26), 73(100) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\delta 1.19(12 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 2.98(2 \mathrm{H}$, sept, $J=6.9 \mathrm{~Hz}), 3.95-4.14(4 \mathrm{H}, \mathrm{m}), 5.82(1 \mathrm{H}, \mathrm{s})$, 7.10-7.17 (3H, m), 7.34-7.66 (4H, m), $7.65(1 \mathrm{H}, \mathrm{s}) ;$ syn-isomer: $\delta 1.16(12 \mathrm{H}, \mathrm{d}, J=7.0$ $\mathrm{Hz}), 2.88(2 \mathrm{H}$, sept, $J=7.0 \mathrm{~Hz}), 3.95-4.14(4 \mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{s}), 7.10-7.17(3 \mathrm{H}, \mathrm{m})$, 7.34-7.66 $(4 \mathrm{H}, \mathrm{m}), 8.08(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ anti-isomer: $\$ 23.52,23.54,27.7$, $27.8,65.3,87.1,93.5,103.0,121.4,123.0,124.9,126.6,132.4,137.4,139.6,144.7$, 148.6; syn-isomer: $\delta 23.3,23.4,27.8,27.9,65.2,84.2,96.9,102.8,121.8,122.7,124.3$, 126.4, 132.3, 136.4, 139.7, 146.6, 147.4. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 79.74; H, 7.53; N, 3.87. Found: C, 79.61; H, 7.72; N, 3.75.

References

(1) D. C. Bradley, J. S. Ghotta, J. Chem. Commun., Chem. Commun., 1973, 1021.
(2) L. Brandsma, H. D. Verkruijsse, Studies in Organic Chemistry 8: Synthesis of Acetylenes, Allenes and Cumulenes, A Laboratory Manual, Elsevier Science Publishing Company Inc: New York, 1981; pp. 228.
(3) The compound 1d was obtained by the reaction of propargyl alcohol with tert-butyldimethylsilyl chloride in the presence of imidazole.
(4) The alkynes $\mathbf{1 f}$ and $\mathbf{1 g}$ were prepared by the treatment of 4-methoxystyrene and 4-bromostyrene with bromine, followed by dehydrobromination, according to the reported method: X. K. Jiang, G. Z. Ji, D. Z. R. Wang, J. Fluorine. Chem., 1996, 79,
173.
(5) The alkyne $\mathbf{1 h}$ was prepared as follows. A mixture of 2-(4-bromophenyl)-1,3-oxolane ($5.9 \mathrm{~g}, 25.8 \mathrm{mmol}$), 2-methylbut-3-yn-2-ol (2.6 g , $31.0 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9.1 \mathrm{mg}, 13 \mu \mathrm{~mol}), \mathrm{CuI}(8.8 \mathrm{mg}, 46 \mu \mathrm{~mol})$, and PPh_{3} $(17 \mathrm{mg}, 65 \mu \mathrm{~mol})$ in triethylamine (25 mL) was stirred at reflux temperature. The reaction was monitored by TLC until the substrates were completely consumed. After stirring for 20 h , the reaction mixture was diluted with ether (100 mL), washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aq. ($50 \mathrm{~mL} \times 2$) and NaCl aq. ($50 \mathrm{~mL} \times 2$), dried over MgSO_{4}, evaporated in vacuo to give $5.48 \mathrm{~g}(91 \%$ yield) of the Sonogashira coupling product. Without further purification, the product was used for the next step. The material, thus obtained, ($5.48 \mathrm{~g}, 23.6 \mathrm{mmol}$) was deprotected in toluene $(60 \mathrm{~mL})$ with a catalytic amount of $\mathrm{NaH}(3.1 \mathrm{mmol})$ under reflux conditions (6 h). The reaction mixture was diluted with dichloromethane, filtered, washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, and evaporated in vacuo. The crude product was chromatographed on silica-gel with chloroform as an eluent to give 2.0 g (49% yield) of $\mathbf{1 h}$ as a white solid. IR $\left(\mathrm{CCl}_{4}\right) 2108,2889,2954,3286 \mathrm{~cm}^{-1} . \mathrm{MS}$ $m / z 174\left(\mathrm{M}^{+}, 21\right), 173$ (70), 129 (39), 102 (62), 101 (31), 73 (59), 29 (100). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.09(1 \mathrm{H}, \mathrm{s}), 4.00-4.15(4 \mathrm{H}, \mathrm{m}$), $5.81(1 \mathrm{H}, \mathrm{s}), 7.44(2 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ~ \$ 77.7,65.3,77.7,83.3,103.2$, 126.4, 132.1, 138.5: (a) E. T. Sabourin, A. J. Omopchenko, J. Org. Chem., 1983, 48, 5135. (b) H. Iwamura, N. Koga, N. Sasagawa, Jpn. Kokai Tokkyo Koho, 1991, JP 03188040 A2 (to Mitsubishi Kasei Co., Japan).
(6) S. Kamijo, Y. Yamamoto, J. Am. Chem. Soc., 2002, 124, 11940; supporting information.

