Supplementary data

Monitoring the effect of ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation using picosecond time-resolved infrared spectroscopy

Marina K. Kuimova,^a Joanne Dyer,^a Michael W. George,^{a*} David C. Grills,^a John M. Kelly,^{b*} Pavel Matousek,^c Anthony W. Parker,^{c*} Xue Zhong Sun,^a Michael Towrie^c and Aine M. Whelan.^b

^a School of Chemistry, University of Nottingham, University Park, Nottingham, UK;
E-mail: mike.george@nottingham.ac.uk
^bChemistry Department, Trinity College, Dublin 2, Ireland. E-mail: jmkelly@tcd.ie
^cCentral Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, UK; E-mail: a.w.parker@rl.ac.uk

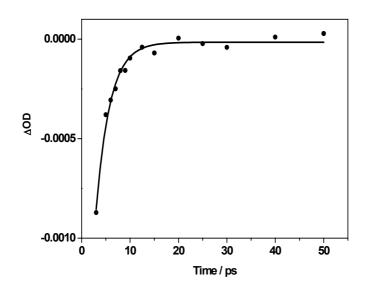


Figure 1. Kinetic trace obtained by monitoring the maximum of the bleach (1670 cm⁻¹) of 5'-dGMP (10 mM) in 50 mM phosphate D_2O buffer following 267 nm excitation. Solid line is a single exponential fit for these data, 2.9 (±0.2) ps.

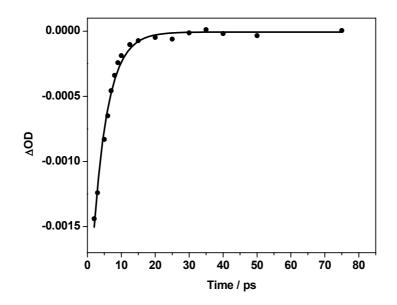


Figure 2. Kinetic trace obtained by monitoring the maximum of the bleach (1630 cm⁻¹) of 5'-dAMP (10 mM) in 50 mM phosphate D_2O buffer following 267 nm excitation. Solid line is a single exponential fit for these data, 4.3 (±0.2) ps.

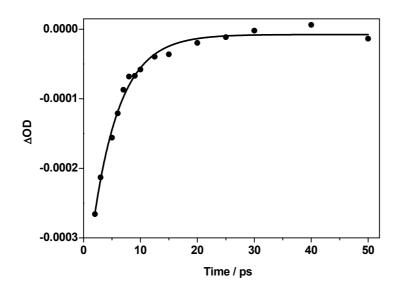


Figure 3. Kinetic trace obtained by monitoring the bleach (1660 cm⁻¹) of 5'-dCMP (10 mM) in 50 mM phosphate D₂O buffer following 267 nm excitation. Solid line is a single exponential fit for these data, 4.7 (\pm 0.3) ps.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

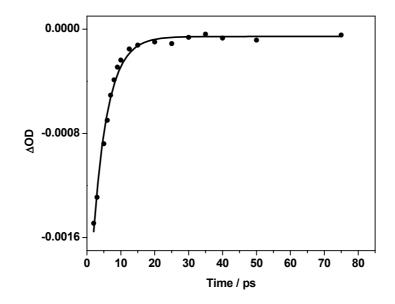


Figure 4. Kinetic trace obtained by monitoring the maximum of the bleach (1660 cm⁻¹) of 5'-dTMP (10 mM) in 50 mM phosphate D_2O buffer following 267 nm excitation. Solid line is a single exponential fit for these data, 2.2 (±0.1) ps.

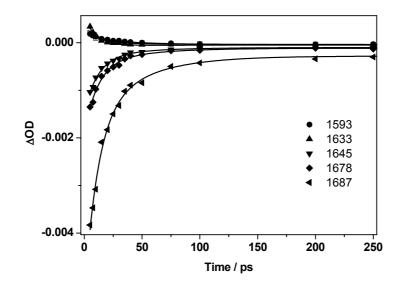


Figure 5. Kinetic traces obtained at single points following 267 nm excitation of polydG-dC• polydG-dC (10 mM) in 50 mM phosphate D_2O buffer. Solid lines are biexponential fit for these data obtained in a global fitting, 12 (±2) ps and 50 (±10) ps.

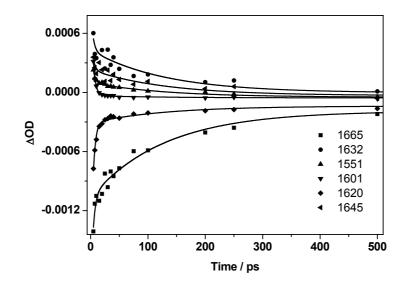


Figure 6. Kinetic traces obtained at single points following 267 nm excitation of polydA-dT• polydA-dT (10 mM) in 50 mM phosphate D_2O buffer. Solid lines are biexponential fits for these data obtained in a global fitting, 4 (±1) ps and 140 (±10) ps.

This journal is © The Royal Society of Chemistry 2005

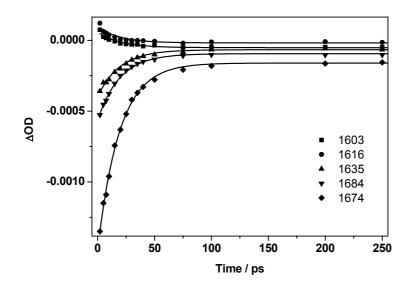


Figure 7. Kinetic traces obtained at single points following 267 nm excitation of polydG-dC• polydG-dC (10 mM) in 50 mM phosphate D_2O buffer with 4M NaCl (Z conformation). Solid lines are single exponential fits for these data obtained in a global fitting, 19.0 (±3) ps.