Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Experimental

The raw materials of tetrabromocavitands and trimethyl-5-pyrimidyl stannane were prepared according to the method reported in the references of 14 and 16 , respectively. 7,11,15,28-Tetrakis(5-pyrimidyl)-1,21,23,25-tetrakis(2-phenylethyl)-2,20:3,19-di-me thano-1H,21H,-23H,25H-bis[1,3]dioxocino[5,4-i:5', $\mathbf{4}^{\prime}-{ }^{\prime}$ ']benzo[1,2-d:5,4- $\left.d^{\prime}\right]$ bis-[1,3]

benzodioxocin Stereoisomer (1)

The mixture of trimethyl-5-pyrimidyl stannane (1.55 g, 6.39 mmol$)$, tetrabromocavitands $(1.02 \mathrm{~g}, 0.80 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.17 \mathrm{~g}, 0.33 \mathrm{mmol})$ in anhydrus toluene $\left(160 \mathrm{~cm}^{3}\right)$ was refluxed under argon at $120{ }^{\circ} \mathrm{C}$ for six days. The resulting solution was poured into water and extracted from ethyl acetate. The yellow solution obtained was evaporated to dryness to leave yellow solid and it was purified by column chromatography (elute, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{EtOH}=85: 15$). The 1 was obtained 0.54 g and the yield is $53.2 \% .\left(\mathrm{R}_{\mathrm{f}}=0.3\right){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}), 2.65-2.78(m, 16 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 4.28\left(\mathrm{~d}, 4 \mathrm{H}\right.$, inner of $\left.\mathrm{OCH}_{2}\right), 4.98(\mathrm{t}, 4 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 5.44\left(\mathrm{~d}, 4 \mathrm{H}\right.$, outer of $\left.\mathrm{OCH}_{2}\right)$, 7.18-7.30 (m, 20H, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 8.46 (s, $8 \mathrm{H}, \mathrm{NCHC}$), 9.13 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{NCHN}$); FAB-mass $\mathrm{m} / \mathrm{z}=1266\left(\mathrm{M}+\mathrm{H}^{+}\right)$; Anal. Calcd for $\mathrm{C}_{80} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{~N}_{8} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.87 \%$; H, 5.18\%; N, 8.73\%,

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Found C, 75.17%; H, 5.08\%; N, 8.76\%.

Preparations of coordination polymers (2~5)

$\mathrm{Mn}(\mathrm{hfac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(8 \mathrm{mg}, 0.016 \mathrm{mmol})$ and the $\mathbf{1}(5 \mathrm{mg}, 0.004 \mathrm{mmol})$ was reacted in ethyl acetate $\left(10 \mathrm{~cm}^{3}\right)$ at $60{ }^{\circ} \mathrm{C}$. The solution was gradually concentrated in the air. After a week, yellow prismatic crystals of $\mathbf{2}$ were formed. The crystals of $\mathbf{3}, \mathbf{4}$, and $\mathbf{5}$ were obtained in the similar way using $\mathrm{Cu}(\mathrm{hfac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{Ni}(\mathrm{hfac})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Co}(\mathrm{hfac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{Mn}(\mathrm{hfac})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, respectively. The elemental analyses were carried out for all crystals of $\mathbf{2}$ to $\mathbf{5}$ treated under vacuum dried at $100^{\circ} \mathrm{C}$ for 6 hours.

Anal. Calcd for $2\left(\mathrm{MnC}_{90} \mathrm{H}_{66} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~F}_{12} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$: Mn, $3.01 \%, \mathrm{C}, 59.25 \% ; \mathrm{H}, 4.20 \%$; N,
6.14\%, Found: Mn, $3.43 \%, \mathrm{C}, 59.55 \%$; H, 3.92%; $\mathrm{N}, 5.88 \%$. Calcd for 3 $\left(\mathrm{Ni}_{2} \mathrm{C}_{100} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~F}_{24} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{Ni}, 5.22 \%, \mathrm{C}, 53.45 \% ; \mathrm{H}, 3.23 \%$; $\mathrm{N}, 4.99 \%$, Found: Ni , $5.36 \%, \mathrm{C}, 53.42 \%$; H, 3.02%; N, 4.93%. Calcd for $4\left(\mathrm{CuC}_{90} \mathrm{H}_{66} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~F}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right): \mathrm{Cu}$, $3.57 \%, \mathrm{C}, 60.47 \%$; H, 3.97%; N, 6.30%, Found: Cu, 3.69%, C, 60.75%; H, 3.77%, N, 6.12\%. Calcd for $\mathbf{5}\left(\mathrm{Co}_{2} \mathrm{C}_{100} \mathrm{H}_{68} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{~F}_{24}\right)$: Co, $5.33 \%, \mathrm{C}, 54.31 \% ; \mathrm{H}, 3.10 \%$; $\mathrm{N}, 5.07 \%$, Found: Co, $5.24 \%, \mathrm{C}, 54.16 \%$; H, 3.15\%; N, 5.02\%.

