Supporting Information

A novel high-spin heterometallic $Ni_{12}K_4$ cluster incorporating large Ni-azide circles and an in situ cyanomethylated di-2-pyridyl ketone

Ming-Liang Tong,^{*a} Montserrat Monfort,^b Juan Modesto Clemente Juan,^c Xiao-Ming Chen,^a Xian-He Bu,^d Masaaki Ohba,^d and Susumu Kitagawa^{*d}

^a School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

Fax: 86 20 8411-2245; E-mail: cestml@zsu.edu.cn

^b Departament de Química Inorgànica, Universitat de Barcelona, Martíi Franquès 1-11, 08028-Barcelona, Spain

^c Instituto de Ciencia Molecular, Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot, Spain

^d Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto

University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

[‡] To a pale-yellow solution of Ni(OAc)₂·4H₂O (0.240 g, 1.0 mmol), a mixture of di-2pyridyl ketone (dpk) (0.092 g, 0.5 mmol), sodium azido (0.065 g, 1.0 mmol) and KOtBu (0.224 g, 2.0 mmol) in acetonitrile (20 ml) was slowly added at room temperature for 4 hrs with magnetic stirring, and then maintained undisturbed at ambient temperature. After 3 d, deep-green crystals were collected by filtration, washed with cold Et₂O (yield ca. 72%). The same product was prepared under the same reaction conditions except for the use of anhydrous Ni(OAc)₂ instead of Ni(OAc)₂·4H₂O. A tetranuclear cluster⁵ was obtained if such reaction was carried out without potassium tert-butylate or using NaOH in place of potassium tert-butylate. Elemental analysis for 1·3MeCN·7H₂O C₉₈H₁₀₅K₄N₅₇Ni₁₂O₃₃, calcd: C, 33.92; H, 3.05; N, 23.01. Found: C, 33.79; H, 2.78; N, 22.95. IR data (KBr, cm⁻¹): v = 3554m, 3398m, 3075w, 2251m, 2073vs, 1584vs, 1569vs, 1472s, 1426vs, 1351m, 1307m, 1270w, 1246w, 1209w, 1162w, 1130w, 1088s, 1059w, 1032m, 985w, 920w, 880w, 846w, 792w, 766w, 740w, 685w, 649w, 637w, 561w, 525w, 490w, 453w.

Crystal refinement parameters. $1 \cdot 3 MeCN \cdot 7 H_2O$: and structure Compound $C_{98}H_{105}K_4N_{57}Ni_{12}O_{33}, M = 3470.31$, triclinic, space group P-1 (No. 2), a = 15.634(3), b =16.604(3), c = 18.257(4) Å, $\alpha = 70.34(3)$, $\beta = 85.79(3)$, $\gamma = 69.34(3)^{\circ}$, V = 4170.6(14) Å³, Z = 12.257(4) Å 1, T = 293(2) K, F(000) = 1768, $D_c = 1.382$ g cm⁻³, $\mu_{(MoK\alpha)} = 1.497$ mm⁻¹; $R_1 = 0.0863$, $wR_2 =$ 0.2729 and GOF = 1.084 for 991 parameters, 8232 reflections with $|Fo| \ge 4\sigma(Fo)$. Data were collected on a Rigaku Mercury CCD diffractometer with graphite-monochromated Mo Ka radiation ($\lambda = 0.71073$ Å). Because the compound contains rich solvated water and acetonitrile molecules, which are easily escaped from the crystals, therefore only 77% of the calculated reflections could be collected for complex 1. The structure was solved with direct methods and refined with full-matrix least-squares (SHELX-97). CCDC reference number

238449. See <u>http://www.rsc.org/suppdata/cc/b4/b415431b</u> for crystallographic data in .cif or other electronic format..

Scheme S1 (a) The formation of a hydrate (R' = H) or a hemiacetal (R' = alkyl or aryl) in the reaction of a ketone with water or an alcohol. (b) The attack of Nucleophiles upon a coordinated nitrile. (c) The mechanism proposed for the base-catalyzed cyanomethylation of ketone.

Fig. S1. Top- and side-views of the Ni₆ cycle bridged by the azides, acetates and oxygen atoms of the dpkMeCN-H ligands in sandwich-type heterometallic Ni₁₂K₄ Cluster of **1**. Ni atoms are shown in green, oxygen red, carbon brown, nitrogen blue, and potassium purple. Hydrogen atoms are omitted for clarity.

Fig. S2. Plot of the reduced magnetization for $1 (M/N\beta)$ vs *H* at 2K.

Fig. S3. Plot of temperature dependance of the in-phase, χ'_M and out-of-phase χ''_M ac magnetic susceptibilities.