Molecular N₂ complexes of iron stabilised by N-heterocyclic 'pincer' dicarbene ligands

Andreas A. Danopoulos, Joseph A. Wright and William B. Motherwell

Department of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK; e-mail: <u>ad1@soton.ac.uk</u> Christopher Ingold Laboratories, University College London, 20 Gordon Str., London, UK, WC1H 0AJ

Supporting Information

Page

Synthetic methodology	2
Structural data for 1	7
Structural data for 2	21
Structural data for 3	36
Structural data for 4	49

Synthetic methodology

All manipulations were carried out under nitrogen using standard Schlenk techniques. All solvents were dried over the usual drying agents and distilled under N_2 prior to use.

Complex 1

A Fisher-Porter bottle equipped with an efficient stir bar was charged in the glove box with 0.5 g (0.6mmol) of Fe(C-N-C)Br₂.thf and 20g Na/Hg (0.4%w/w, 3.5mmol, excess). After it was taken out, 20cm³ thf were added at room temperature, it was pressurised with N₂ (80psi), and stirred vigorously at room temperature for 3-4h. During the first few minutes the colour of the solution changed from red-purple to dark green-brown. The solution was decanted from the Hg pool, the thf evaporated under reduced pressure, the residue was dissolved in pentane (50cm³) and filtered. Concentration of the pentane solution to ca 10cm³ and slow cooling to -35°C gave dark green-brown plates of 1 as pentane solvate. Yield: 0.15g, ca 36% based on iron. Alternatively the pentane solution can be evaporated to dryness by passing a slow stream of N₂ over it.

Found: C, 66.45; H, 6.92; N, 18.11. Calculated for C₄₀H₅₃FeN₉ requires C, 67.12; H, 7.46; N, 17.61%.

NMR (C₆D₆): ¹H, δ1.09 and 1.25 [d, 12H each, J=6.82Hz, (CH₃)₂CH], 3.13(sep., 4H, J=6.82Hz, (CH₃)₂CH], 6.71 and 7.44 [s, br, 2H each, imidazol-2-yliden backbone], 6.92 [d, 2H, J=7.60Hz, 3-py], 7.20-7.35[m, 7H, aromatic]. ¹³C{¹H}, δ, 23.23 and 25.82 [(CH₃)₂CH], 28.48[(CH₃)₂CH], 99.97, 111.13, 114.98,123.90, 125.53, 129.70, 137.34, 142.24 and 147.58 aromatic carbons, 203.87

(carbene).

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2004 IR(Nujol, cm⁻¹): 2109, 2031 and 2044(sh).

Complex 2.

This was prepared by bubbling a slow steam of CO to a thf solution of complex **1** (50mg), for 5min. The formation of **2** is very fast and accompanied by a change of the colour of the solution from green brown to purple. After evaporation of the volatiles the residue was crystallised by dissolving in ether/light petroleum and cooling to – 35°C. X-ray quality crystals were obtained by slow evaporation of benzene solutions. In this case there is one benzene molecule incorporated in the lattice. Yield: 0.050mg.The same product could be obtained by reduction of Fe(C-N-C)Br₂.thf by Na(Hg) in the presence of CO.

Found: C, 72.50; H, 6.32; N, 8.85. Calculated for C₃₇H₄₅FeN₇ requires C, 72.62; H, 6.62; N, 9.20%).

NMR (C₆D₆): ¹H, δ 1.19 and 1.48 [d, 12H each, J=6.55Hz, (CH₃)₂CH], 3.15(sep., 4H, J=6.55Hz, (CH₃)₂CH], 6.80 and 7.45 [s, br, 2H each, imidazol-2-yliden backbone], 7.00 [d, 2H, J=7.60Hz, 3-py], 7.20-7.35[m, 7H, aromatic]. ¹³C{¹H}, δ, 22.76 and 26.24 [(CH₃)₂CH], 28.32[(CH₃)₂CH], 99.54, 111.18, 119.15, 124.10, 125.54, 129.92, 137.10, 142.59 and 147.40 aromatic carbons, 210.43

(carbene), 215.57(CO).

IR(Nujol, cm⁻¹): 1928, 1865.

Complex 3.

A solution of **1** (0.05g, 0.08mmol) in thf (20cm³) in a Fisher Porter bottle was pressurised with ethene (80 psi) and the solution was stirred at room temperature for 12h. It was re-pressurised periodically if necessary. After the end of the reaction the # Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

solution was transferred to a Schlenk tube and the volatiles were removed under reduced pressure. The solid residue was extracted into light petroleum (50cm³), filtered, concentrated to ca 10cm³ and left for crystallisation at room temperature. The product appears as red-brown air sensitive blocks after a few days. Additional crop can be obtained by cooling the supernatant at 1°C. Yield: 0.040g, ca 77%.

Found: C, 68.75; H, 6.95; N, 15.55. Calculated for C₃₇H₄₅FeN₇ requires C, 69.04; H, 7.05; N, 15.23%).

NMR (C₆D₆): ¹H, δ 1.15, 1.20, 1.50 and 1.55 [d, 6H each, J=6.50Hz, (CH₃)₂CH], 3.05 and 3.38 (sept., 2H, J=6.55Hz, (CH₃)₂CH], 1.85(s, 4H, C₂H₄), 6.80 and 7.50 [s, br, 2H each, imidazol-2-yliden backbone], 7.10 [d, 2H, J=7.60Hz, 3-py], 7.20-7.35[m, 7H, aromatic].

¹³C{¹H}, δ, 21.80, 22.00, 26.24, 26.82, [(*C*H₃)₂CH], 28.15 and 28.79 [(*C*H₃)₂*C*H], 36.84[*C*₂H₄], 99.10, 111.05, 123.09, 124.03, 126.11, 137.10, 145.17, 146.88, 147.66 aromatic carbons, 210.78 (carbene).

IR(Nujol, cm⁻¹): 2056.

Complex 4a.

To a solution of **1** (0.050g, 0.08mmol) in thf (20cm³) was added PMe₃ (0.1cm³, excess) and the mixture was stirred at room temperature for 2 h. Removal of the volatiles under reduced pressure, extraction of the residue to ether (10cm³), concentration of the ether extracts to *ca* 1cm³, and cooling to -35° C gave **4a** as green brown air sensitive blocks. There is one molecule of ether incorporated in the crystal lattice.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2004

The same product can be obtained by reduction of $Fe(C-N-C)Br_2$.thf with Na(Hg) in

thf in the presence of excess of PMe₃. The yield is comparable to the previous variant of the method.

Found: C, 65.34; H, 7.10; N, 12.25. Calculated for C₄₂H₆₀FeN₇OP requires C, 65.87;

H, 7.89; N, 12.80%).

NMR (C₆D₆): ¹H, δ 0.25 (d, 9H, P(CH₃)₃], 0.95, 1.00, 1.20 and 1.30[d, 6H each,

J=6.50Hz, (CH₃)₂CH], 3.05 and 3.38 (sept., 2H, J=6.50Hz, (CH₃)₂CH], 6.80 and 7.40

[d, 2H each, imidazol-2-yliden backbone], 7.10 [d, 2H, J=7.60Hz, 3-py], 7.20-

7.35[m, 7H, aromatic].

 $^{13}C{^{1}H}, \delta$, 20.78 [d, P(CH₃)₃], 22.74, 23.27, 24.31, 25.39, [(CH₃)₂CH], 28.15 and

28.29 [(CH₃)₂CH], 97.48, 97.53, 109.34, 112.32, 112.40, 123.12, 124.26, 126.17,

138.46, 139.69, 145.97, 148.94 aromatic carbons, 208.56 (carbene).

 $^{31}P{^{1}H}, \delta 20.07.$

IR(Nujol, cm⁻¹): 2032.

Complex 4b

This was prepared by a method analogous to 4a using PCy₃ instead of PMe₃.

Crystallisation was carried out from light petroleum.

NMR (C₆D₆): ¹H, δ 0.95, 1.00, 1.20 and 1.30[d, 6H each, (CH₃)₂CH], 3.05 and 3.38 (sept., 2H, (CH₃)₂CH], 1.5-1.8 (m, *ca*. 33H, C₆H₁₁), 6.80 and 7.40 [d, 2H each, imidazol-2-yliden backbone], 7.10 [d, 2H, J=7.60Hz, 3-py], 7.20-7.35[m, 7H, aromatic].

 $^{31}P{^{1}H}, \delta 53.80.$

IR(Nujol, cm⁻¹): 2012.

Structural data for 1

Table 1. Crystal data and structure refinement for 1			
Identification code	Complex 1		
Empirical formula	C40 H53 Fe N9		
Formula weight	715.76		
Temperature	120(2) K		
Wavelength	0.71073 ≈		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	$a = 8.7070(17) \approx$	α= 73.78(2)∞.	
	$b = 15.226(3) \approx$	$\beta = 79.44(2)\infty$.	
	$c = 15.788(5) \approx$	$\gamma=76.978(16)\infty.$	
Volume	1941.8(8) ≈ ³		
Z	2		
Density (calculated)	1.224 Mg/m ³		
Absorption coefficient	0.428 mm ⁻¹		
F(000)	764		
Crystal size	0.60 x 0.25 x 0.01 mm ³		
Theta range for data collection	3.02 to 27.66∞.		
Index ranges	-11<=h<=11, -19<=k<=19, -20<=l<=20		
Reflections collected	34076		
Independent reflections	8972 [R(int) = 0.0698]		
Completeness to theta = 27.66∞	98.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9957 and 0.7412		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8972 / 0 / 461		
Goodness-of-fit on F ²	1.016		
Final R indices [I>2sigma(I)]	R1 = 0.0583, $wR2 = 0.1081$		
R indices (all data)	R1 = 0.1035, $wR2 = 0.1221$		
Largest diff. peak and hole	1.058 and -0.615 e^{-3}		

Table 2	. Atomic coordinates ($x\;10^4)$ and equivalent isotropic displacement parameters ($\approx^2\!\!x\;1$	0 ³)
for 1 .	$U(eq)$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.	

	X	у	Z	U(eq)
C(1)	8124(3)	573(2)	3335(2)	21(1)
C(2)	9230(3)	1550(2)	2037(2)	17(1)
C(3)	8342(3)	1078(2)	991(2)	23(1)
C(4)	7823(3)	554(2)	1778(2)	24(1)
C(5)	9849(3)	2392(2)	464(2)	17(1)
C(6)	11468(3)	2234(2)	153(2)	20(1)
C(7)	12059(3)	2941(2)	-500(2)	27(1)
C(8)	11072(3)	3773(2)	-828(2)	30(1)
C(9)	9475(3)	3916(2)	-504(2)	27(1)
C(10)	8829(3)	3224(2)	150(2)	22(1)
C(11)	7074(3)	3403(2)	502(2)	25(1)
C(12)	6062(3)	3506(2)	-224(2)	39(1)
C(13)	6632(4)	4251(2)	890(2)	41(1)
C(14)	12524(3)	1305(2)	492(2)	24(1)
C(15)	12583(4)	660(2)	-106(2)	36(1)
C(16)	14201(3)	1398(2)	569(2)	34(1)
C(17)	7285(3)	-81(2)	3886(2)	27(1)
C(18)	7144(3)	-187(2)	4803(2)	29(1)
C(19)	7812(3)	373(2)	5136(2)	25(1)
C(20)	8615(3)	1017(2)	4543(2)	20(1)
C(21)	9961(3)	2276(2)	3972(2)	19(1)
C(22)	9996(3)	2670(2)	5264(2)	27(1)
C(23)	9314(3)	1916(2)	5496(2)	27(1)
C(24)	10954(3)	3719(2)	3826(2)	20(1)
C(25)	12562(3)	3660(2)	3483(2)	21(1)
C(26)	13051(3)	4480(2)	2969(2)	24(1)
C(27)	11983(3)	5311(2)	2807(2)	28(1)
C(28)	10394(3)	5347(2)	3149(2)	25(1)
C(29)	9839(3)	4549(2)	3666(2)	21(1)
C(30)	8084(3)	4596(2)	4019(2)	25(1)
C(31)	7069(3)	4910(3)	3261(2)	42(1)
C(32)	7544(3)	5237(3)	4647(2)	44(1)
C(33)	13726(3)	2747(2)	3666(2)	25(1)

#	Supplementary Material (ESI) for Chemical Communications
#	This journal is © The Royal Society of Chemistry 2004

C(34)	14971(3)	2632(2)	2865(2)	38(1)
C(35)	14522(4)	2626(2)	4486(2)	46(1)
C(36)	3229(6)	7959(3)	2338(3)	84(2)
C(37)	1641(7)	8592(3)	1901(3)	99(2)
C(38)	372(5)	8048(3)	1988(3)	78(1)
C(39)	4296(9)	8489(4)	2455(4)	130(3)
C(40)	5769(7)	7883(4)	2817(4)	100(2)
Fe(1)	10064(1)	1962(1)	2869(1)	17(1)
N(1)	12127(3)	1311(2)	2774(1)	21(1)
N(2)	13332(3)	865(2)	2759(2)	29(1)
N(3)	10391(3)	3082(2)	2141(1)	22(1)
N(4)	10608(3)	3764(2)	1697(2)	35(1)
N(5)	8828(2)	1118(1)	3645(1)	18(1)
N(6)	8373(2)	827(1)	2420(1)	19(1)
N(7)	9203(2)	1671(1)	1146(1)	17(1)
N(8)	9286(2)	1680(2)	4716(1)	20(1)
N(9)	10395(2)	2886(2)	4346(1)	21(1)

.

C(1)-N(5)	1.367(3)
C(1)-C(17)	1.376(3)
C(1)-N(6)	1.377(3)
C(2)-N(7)	1.370(3)
C(2)-N(6)	1.402(3)
C(2)-Fe(1)	1.915(3)
C(3)-C(4)	1.338(4)
C(3)-N(7)	1.390(3)
C(3)-H(3)	0.9500
C(4)-N(6)	1.390(3)
C(4)-H(4)	0.9500
C(5)-C(10)	1.394(4)
C(5)-C(6)	1.395(3)
C(5)-N(7)	1.440(3)
C(6)-C(7)	1.387(4)
C(6)-C(14)	1.517(4)
C(7)-C(8)	1.385(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.381(4)
C(8)-H(8)	0.9500
C(9)-C(10)	1.392(4)
C(9)-H(9)	0.9500
C(10)-C(11)	1.518(4)
C(11)-C(12)	1.523(4)
C(11)-C(13)	1.524(4)
С(11)-Н(11)	1.0000
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(16)	1.528(4)
C(14)-C(15)	1.529(4)
C(14)-H(14)	1.0000
C(15)-H(15A)	0.9800

Table 3. Bond lengths $[\approx]$ and angles $[\infty]$ for 1.

C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.396(4)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.388(4)
C(18)-H(18)	0.9500
C(19)-C(20)	1.373(3)
C(19)-H(19)	0.9500
C(20)-N(5)	1.364(3)
C(20)-N(8)	1.383(3)
C(21)-N(9)	1.379(3)
C(21)-N(8)	1.394(3)
C(21)-Fe(1)	1.912(3)
C(22)-C(23)	1.340(4)
C(22)-N(9)	1.389(3)
C(22)-H(22)	0.9500
C(23)-N(8)	1.382(3)
C(23)-H(23)	0.9500
C(24)-C(25)	1.398(3)
C(24)-C(29)	1.400(4)
C(24)-N(9)	1.438(3)
C(25)-C(26)	1.394(4)
C(25)-C(33)	1.513(4)
C(26)-C(27)	1.381(4)
C(26)-H(26)	0.9500
C(27)-C(28)	1.385(4)
C(27)-H(27)	0.9500
C(28)-C(29)	1.394(4)
C(28)-H(28)	0.9500
C(29)-C(30)	1.521(3)
C(30)-C(31)	1.522(4)
C(30)-C(32)	1.523(4)
C(30)-H(30)	1.0000
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800

C(31)-H(31C)	0.9800
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-C(35)	1.526(4)
C(33)-C(34)	1.529(4)
C(33)-H(33)	1.0000
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(36)-C(39)	1.426(7)
C(36)-C(37)	1.641(7)
C(36)-H(36A)	0.9900
C(36)-H(36B)	0.9900
C(37)-C(38)	1.489(6)
C(37)-H(37A)	0.9900
C(37)-H(37B)	0.9900
C(38)-H(38A)	0.9800
C(38)-H(38B)	0.9800
C(38)-H(38C)	0.9800
C(39)-C(40)	1.505(8)
C(39)-H(39A)	0.9900
C(39)-H(39B)	0.9900
C(40)-H(40A)	0.9800
C(40)-H(40B)	0.9800
C(40)-H(40C)	0.9800
Fe(1)-N(3)	1.820(2)
Fe(1)-N(1)	1.847(2)
Fe(1)-N(5)	1.890(2)
N(1)-N(2)	1.115(3)
N(3)-N(4)	1.113(3)
N(5)-C(1)-C(17)	123.0(2)
N(5)-C(1)-N(6)	108.1(2)
C(17)-C(1)-N(6)	128.9(2)

N(7)-C(2)-N(6)	102.3(2)
N(7)-C(2)-Fe(1)	142.92(18)
N(6)-C(2)-Fe(1)	114.66(17)
C(4)-C(3)-N(7)	108.0(2)
C(4)-C(3)-H(3)	126.0
N(7)-C(3)-H(3)	126.0
C(3)-C(4)-N(6)	106.4(2)
C(3)-C(4)-H(4)	126.8
N(6)-C(4)-H(4)	126.8
C(10)-C(5)-C(6)	122.7(2)
C(10)-C(5)-N(7)	118.5(2)
C(6)-C(5)-N(7)	118.8(2)
C(7)-C(6)-C(5)	117.6(2)
C(7)-C(6)-C(14)	121.4(2)
C(5)-C(6)-C(14)	121.0(2)
C(8)-C(7)-C(6)	121.0(2)
C(8)-C(7)-H(7)	119.5
C(6)-C(7)-H(7)	119.5
C(9)-C(8)-C(7)	120.4(3)
C(9)-C(8)-H(8)	119.8
C(7)-C(8)-H(8)	119.8
C(8)-C(9)-C(10)	120.7(3)
C(8)-C(9)-H(9)	119.7
C(10)-C(9)-H(9)	119.7
C(9)-C(10)-C(5)	117.7(2)
C(9)-C(10)-C(11)	119.6(2)
C(5)-C(10)-C(11)	122.7(2)
C(10)-C(11)-C(12)	110.5(2)
C(10)-C(11)-C(13)	111.5(2)
C(12)-C(11)-C(13)	111.0(2)
С(10)-С(11)-Н(11)	107.9
С(12)-С(11)-Н(11)	107.9
С(13)-С(11)-Н(11)	107.9
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
С(11)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5

H(12B)-C(12)-H(12C)	109.5
С(11)-С(13)-Н(13А)	109.5
С(11)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(11)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(6)-C(14)-C(16)	113.1(2)
C(6)-C(14)-C(15)	109.7(2)
C(16)-C(14)-C(15)	110.6(2)
C(6)-C(14)-H(14)	107.8
C(16)-C(14)-H(14)	107.8
C(15)-C(14)-H(14)	107.8
С(14)-С(15)-Н(15А)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
С(14)-С(15)-Н(15С)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
С(14)-С(16)-Н(16А)	109.5
С(14)-С(16)-Н(16В)	109.5
H(16A)-C(16)-H(16B)	109.5
С(14)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(1)-C(17)-C(18)	118.2(3)
С(1)-С(17)-Н(17)	120.9
С(18)-С(17)-Н(17)	120.9
C(19)-C(18)-C(17)	120.1(2)
C(19)-C(18)-H(18)	120.0
С(17)-С(18)-Н(18)	120.0
C(20)-C(19)-C(18)	118.2(3)
С(20)-С(19)-Н(19)	120.9
С(18)-С(19)-Н(19)	120.9
N(5)-C(20)-C(19)	123.4(2)
N(5)-C(20)-N(8)	108.3(2)
C(19)-C(20)-N(8)	128.2(2)
N(9)-C(21)-N(8)	102.0(2)

142.84(19)
115.05(18)
107.9(2)
126.1
126.1
106.3(2)
126.8
126.8
123.2(2)
118.9(2)
117.9(2)
117.1(2)
121.4(2)
121.5(2)
121.1(2)
119.5
119.5
120.6(3)
119.7
119.7
120.8(3)
119.6
119.6
117.2(2)
120.2(2)
122.6(2)
111.1(2)
111.4(2)
110.2(2)
108.0
108.0
108.0
109.5
109.5
109.5
109.5
109.5
109.5

C(30)-C(32)-H(32A)	109.5
C(30)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(30)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(25)-C(33)-C(35)	111.1(2)
C(25)-C(33)-C(34)	112.8(2)
C(35)-C(33)-C(34)	110.7(2)
С(25)-С(33)-Н(33)	107.3
С(35)-С(33)-Н(33)	107.3
C(34)-C(33)-H(33)	107.3
C(33)-C(34)-H(34A)	109.5
C(33)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
C(33)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(33)-C(35)-H(35A)	109.5
C(33)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
C(33)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(39)-C(36)-C(37)	114.1(5)
C(39)-C(36)-H(36A)	108.7
C(37)-C(36)-H(36A)	108.7
C(39)-C(36)-H(36B)	108.7
C(37)-C(36)-H(36B)	108.7
H(36A)-C(36)-H(36B)	107.6
C(38)-C(37)-C(36)	113.0(3)
C(38)-C(37)-H(37A)	109.0
С(36)-С(37)-Н(37А)	109.0
C(38)-C(37)-H(37B)	109.0
С(36)-С(37)-Н(37В)	109.0
H(37A)-C(37)-H(37B)	107.8
C(37)-C(38)-H(38A)	109.5
C(37)-C(38)-H(38B)	109.5

H(38A)-C(38)-H(38B)	109.5
C(37)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
C(36)-C(39)-C(40)	112.3(5)
C(36)-C(39)-H(39A)	109.1
C(40)-C(39)-H(39A)	109.1
C(36)-C(39)-H(39B)	109.1
C(40)-C(39)-H(39B)	109.1
H(39A)-C(39)-H(39B)	107.9
C(39)-C(40)-H(40A)	109.5
C(39)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
C(39)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
N(3)-Fe(1)-N(1)	98.88(10)
N(3)-Fe(1)-N(5)	154.90(9)
N(1)-Fe(1)-N(5)	106.22(9)
N(3)-Fe(1)-C(21)	97.10(10)
N(1)-Fe(1)-C(21)	99.93(10)
N(5)-Fe(1)-C(21)	78.82(10)
N(3)-Fe(1)-C(2)	97.02(10)
N(1)-Fe(1)-C(2)	99.77(10)
N(5)-Fe(1)-C(2)	78.94(10)
C(21)-Fe(1)-C(2)	153.61(10)
N(2)-N(1)-Fe(1)	175.0(2)
N(4)-N(3)-Fe(1)	179.2(2)
C(20)-N(5)-C(1)	117.0(2)
C(20)-N(5)-Fe(1)	121.34(17)
C(1)-N(5)-Fe(1)	121.61(17)
C(1)-N(6)-C(4)	132.1(2)
C(1)-N(6)-C(2)	116.1(2)
C(4)-N(6)-C(2)	111.6(2)
C(2)-N(7)-C(3)	111.7(2)
C(2)-N(7)-C(5)	123.7(2)
C(3)-N(7)-C(5)	124.3(2)
C(23)-N(8)-C(20)	131.9(2)

C(23)-N(8)-C(21)	112.3(2)
C(20)-N(8)-C(21)	115.6(2)
C(21)-N(9)-C(22)	111.5(2)
C(21)-N(9)-C(24)	123.0(2)
C(22)-N(9)-C(24)	124.8(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	17(1)	17(1)	27(2)	-2(1)	-3(1)	-3(1)
C(2)	14(1)	15(1)	20(1)	-3(1)	-2(1)	1(1)
C(3)	25(1)	21(1)	27(2)	-9(1)	-8(1)	-6(1)
C(4)	24(1)	20(1)	33(2)	-7(1)	-10(1)	-7(1)
C(5)	23(1)	16(1)	15(1)	-5(1)	-3(1)	-6(1)
C(6)	22(1)	24(1)	16(1)	-8(1)	-3(1)	-4(1)
C(7)	24(1)	35(2)	24(2)	-10(1)	1(1)	-10(1)
C(8)	39(2)	30(2)	22(2)	-1(1)	-2(1)	-16(1)
C(9)	32(2)	21(2)	26(2)	-1(1)	-8(1)	-4(1)
C(10)	26(1)	21(1)	19(1)	-6(1)	-4(1)	-6(1)
C(11)	24(1)	18(1)	28(2)	-2(1)	-4(1)	1(1)
C(12)	27(2)	43(2)	47(2)	-8(2)	-10(1)	-4(1)
C(13)	38(2)	35(2)	47(2)	-17(2)	1(2)	0(1)
C(14)	24(1)	24(2)	23(2)	-7(1)	-3(1)	-1(1)
C(15)	40(2)	31(2)	38(2)	-14(1)	-4(1)	0(1)
C(16)	22(2)	40(2)	36(2)	-9(1)	-4(1)	-1(1)
C(17)	24(1)	21(1)	35(2)	-2(1)	-3(1)	-8(1)
C(18)	23(1)	23(2)	32(2)	4(1)	3(1)	-6(1)
C(19)	22(1)	24(2)	23(2)	2(1)	1(1)	-5(1)
C(20)	17(1)	20(1)	20(1)	-1(1)	-1(1)	-2(1)
C(21)	16(1)	21(1)	19(1)	-3(1)	-1(1)	-3(1)
C(22)	34(2)	33(2)	16(1)	-9(1)	0(1)	-7(1)
C(23)	32(2)	32(2)	14(1)	-4(1)	1(1)	-7(1)
C(24)	24(1)	22(1)	16(1)	-7(1)	-2(1)	-7(1)
C(25)	22(1)	24(1)	20(1)	-9(1)	-5(1)	-4(1)
C(26)	21(1)	31(2)	26(2)	-13(1)	-1(1)	-9(1)
C(27)	31(2)	26(2)	28(2)	-6(1)	-3(1)	-12(1)
C(28)	27(1)	22(1)	27(2)	-7(1)	-8(1)	-1(1)
C(29)	23(1)	26(2)	19(1)	-11(1)	-3(1)	-5(1)
C(30)	21(1)	26(2)	28(2)	-8(1)	-1(1)	-3(1)
C(31)	28(2)	69(2)	38(2)	-23(2)	-5(1)	-12(2)
C(32)	25(2)	70(2)	47(2)	-38(2)	2(1)	-5(2)
C(33)	22(1)	24(2)	30(2)	-9(1)	-2(1)	-4(1)

Table 4. Anisotropic displacement parameters ($\approx^2 x \ 10^3$) for 04jaw029. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004

C(34)	30(2)	33(2)	48(2)	-14(2)	6(1)	-1(1)
C(35)	45(2)	41(2)	55(2)	-16(2)	-26(2)	8(2)
C(36)	139(4)	56(3)	49(3)	-28(2)	41(3)	-29(3)
C(37)	130(5)	38(3)	80(4)	10(2)	20(3)	23(3)
C(38)	81(3)	58(3)	84(3)	-1(2)	-20(3)	-3(3)
C(39)	193(7)	80(4)	111(5)	-53(4)	85(5)	-63(5)
C(40)	134(5)	99(4)	83(4)	-34(3)	-28(4)	-31(4)
Fe(1)	19(1)	17(1)	16(1)	-3(1)	-1(1)	-6(1)
N(1)	25(1)	22(1)	18(1)	-5(1)	-1(1)	-8(1)
N(2)	26(1)	30(1)	29(1)	-8(1)	-3(1)	-1(1)
N(3)	30(1)	22(1)	18(1)	-8(1)	-4(1)	-8(1)
N(4)	58(2)	24(1)	25(1)	-1(1)	-11(1)	-17(1)
N(5)	17(1)	16(1)	20(1)	-3(1)	-1(1)	-3(1)
N(6)	19(1)	17(1)	22(1)	-4(1)	-3(1)	-6(1)
N(7)	20(1)	16(1)	19(1)	-7(1)	-5(1)	-4(1)
N(8)	20(1)	23(1)	16(1)	-2(1)	0(1)	-5(1)
N(9)	23(1)	21(1)	18(1)	-4(1)	0(1)	-6(1)

Structural data for 2

2	
C46 H50 Fe N5 O2	
760.76	
120(2) K	
0.71073 ≈	
Orthorhombic	
Pbca	
$a = 17.343(3) \approx$	α =90∞.
$b = 16.989(2) \approx$	β=90∞.
$c = 27.436(4) \approx$	$\gamma = 90\infty$.
8084(2) ≈ ³	
8	
1.250 Mg/m ³	
0.417 mm ⁻¹	
3224	
0.10 x 0.04 x 0.01 mm ³	
2.97 to 24.65∞.	
-20<=h<=17, -19<=k<=16, -32<=l<=24	
23527	
6816 [R(int) = 0.0761]	
99.7 %	
Semi-empirical from equivalen	ts
0.9958 and 0.4310708662	
Full-matrix least-squares on F ²	
6816 / 2 / 495	
1.018	
R1 = 0.0568, WR2 = 0.1066	
R1 = 0.0950, wR2 = 0.1192	
0.356 and -0.451 e. \approx^{-3}	
	2 C46 H50 Fe N5 O2 760.76 120(2) K 0.71073 \approx Orthorhombic Pbca a = 17.343(3) \approx b = 16.989(2) \approx c = 27.436(4) \approx 8084(2) \approx^3 8 1.250 Mg/m ³ 0.417 mm ⁻¹ 3224 0.10 x 0.04 x 0.01 mm ³ 2.97 to 24.65 ∞ . -20<=h<=17, -19<=k<=16, -32 23527 6816 [R(int) = 0.0761] 99.7 % Semi-empirical from equivalent 0.9958 and 0.4310708662 Full-matrix least-squares on F ² 6816 / 2 / 495 1.018 R1 = 0.0568, wR2 = 0.1066 R1 = 0.0950, wR2 = 0.1192 0.356 and -0.451 e. \approx^{-3}

Table 5. Crystal data and structure refinement for **2**.

Table 6. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($\approx^2 x \ 10^3$) for 04nts021. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

				LI(a a)
	x	у	Z	U(eq)
C(1)	3128(2)	-199(2)	3769(1)	22(1)
C(2)	2483(2)	887(2)	4119(1)	19(1)
C(3)	1783(2)	244(2)	4707(1)	24(1)
C(4)	2183(2)	-311(2)	4473(1)	25(1)
C(5)	1615(2)	1716(2)	4630(1)	19(1)
C(6)	908(2)	1922(2)	4419(1)	21(1)
C(7)	602(2)	2659(2)	4534(1)	25(1)
C(8)	975(2)	3157(2)	4856(1)	29(1)
C(9)	1660(2)	2927(2)	5073(1)	25(1)
C(10)	2001(2)	2207(2)	4967(1)	21(1)
C(11)	2737(2)	1940(2)	5214(1)	26(1)
C(12)	3254(2)	2610(2)	5387(1)	40(1)
C(13)	2545(2)	1404(2)	5647(1)	36(1)
C(14)	469(2)	1344(2)	4098(1)	27(1)
C(15)	-103(2)	866(2)	4410(1)	30(1)
C(16)	31(2)	1737(2)	3681(1)	36(1)
C(17)	3357(2)	-962(2)	3676(1)	27(1)
C(18)	3915(2)	-1083(2)	3321(1)	31(1)
C(19)	4242(2)	-446(2)	3074(1)	27(1)
C(20)	3983(2)	297(2)	3188(1)	22(1)
C(21)	3856(2)	1685(2)	3192(1)	21(1)
C(22)	4818(2)	2002(2)	2652(1)	24(1)
C(23)	4809(2)	1213(2)	2677(1)	26(1)
C(24)	4088(2)	3124(2)	3035(1)	21(1)
C(25)	3617(2)	3508(2)	2699(1)	26(1)
C(26)	3479(2)	4308(2)	2772(1)	32(1)
C(27)	3795(2)	4702(2)	3163(1)	31(1)
C(28)	4259(2)	4304(2)	3489(1)	28(1)
C(29)	4425(2)	3510(2)	3435(1)	23(1)
C(30)	4962(2)	3077(2)	3782(1)	28(1)
C(31)	5771(2)	3018(2)	3568(1)	41(1)
C(32)	5012(2)	3451(2)	4293(1)	34(1)
C(33)	3294(2)	3098(2)	2250(1)	36(1)

C(34)	3760(2)	3325(2)	1796(1)	49(1)
C(35)	2439(2)	3269(2)	2171(1)	42(1)
C(36)	2230(2)	1764(2)	3277(1)	26(1)
C(37)	3140(2)	2328(2)	3986(1)	24(1)
C(38)	2667(2)	900(2)	2099(1)	39(1)
C(39)	3166(2)	499(2)	1796(2)	49(1)
C(40)	2960(3)	328(2)	1326(2)	53(1)
C(41)	2243(3)	554(2)	1157(1)	53(1)
C(42)	1733(3)	949(2)	1461(2)	58(1)
C(43)	1959(3)	1122(2)	1934(1)	45(1)
C(44)	86(4)	13(3)	489(2)	68(2)
C(45)	604(3)	-372(3)	205(3)	68(2)
C(46)	-517(3)	380(2)	287(2)	64(2)
Fe(1)	3027(1)	1476(1)	3636(1)	20(1)
N(1)	3416(2)	431(1)	3523(1)	21(1)
N(2)	2609(2)	74(1)	4115(1)	20(1)
N(3)	1961(2)	972(1)	4496(1)	19(1)
N(4)	4227(2)	1019(1)	3006(1)	21(1)
N(5)	4244(2)	2287(1)	2964(1)	20(1)
O(1)	1697(1)	1984(1)	3060(1)	36(1)
O(2)	3180(1)	2912(1)	4206(1)	35(1)

Table 7	Bond lengths	$[\approx]$ and anothes	$[\infty]$ for 2
1 4010 / .	Dona longuis		[] 101 =

C(1)-N(1)	1.359(4)
C(1)-C(17)	1.379(4)
C(1)-N(2)	1.389(4)
C(2)-N(3)	1.384(4)
C(2)-N(2)	1.400(4)
C(2)-Fe(1)	1.910(3)
C(3)-C(4)	1.334(4)
C(3)-N(3)	1.399(4)
C(3)-H(3)	0.9500
C(4)-N(2)	1.393(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.401(4)
C(5)-C(10)	1.414(4)
C(5)-N(3)	1.446(4)
C(6)-C(7)	1.397(4)
C(6)-C(14)	1.523(4)
C(7)-C(8)	1.385(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.384(4)
C(8)-H(8)	0.9500
C(9)-C(10)	1.390(4)
C(9)-H(9)	0.9500
C(10)-C(11)	1.514(4)
C(11)-C(12)	1.525(5)
C(11)-C(13)	1.535(4)
С(11)-Н(11)	1.0000
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(16)	1.526(4)
C(14)-C(15)	1.541(4)
C(14)-H(14)	1.0000
C(15)-H(15A)	0.9800

C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.389(5)
C(17)-H(17)	0.9500
C(18)-C(19)	1.397(4)
C(18)-H(18)	0.9500
C(19)-C(20)	1.376(4)
C(19)-H(19)	0.9500
C(20)-N(1)	1.366(4)
C(20)-N(4)	1.390(4)
C(21)-N(5)	1.375(4)
C(21)-N(4)	1.398(4)
C(21)-Fe(1)	1.918(3)
C(22)-C(23)	1.342(4)
C(22)-N(5)	1.399(4)
С(22)-Н(22)	0.9500
C(23)-N(4)	1.395(4)
С(23)-Н(23)	0.9500
C(24)-C(25)	1.394(4)
C(24)-C(29)	1.405(4)
C(24)-N(5)	1.462(4)
C(25)-C(26)	1.395(4)
C(25)-C(33)	1.521(4)
C(26)-C(27)	1.379(5)
С(26)-Н(26)	0.9500
C(27)-C(28)	1.380(5)
С(27)-Н(27)	0.9500
C(28)-C(29)	1.386(4)
C(28)-H(28)	0.9500
C(29)-C(30)	1.523(4)
C(30)-C(31)	1.525(5)
C(30)-C(32)	1.540(4)
С(30)-Н(30)	1.0000
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800

C(31)-H(31C)	0.9800
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-C(35)	1.527(5)
C(33)-C(34)	1.534(5)
С(33)-Н(33)	1.0000
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(36)-O(1)	1.161(4)
C(36)-Fe(1)	1.767(4)
C(37)-O(2)	1.165(4)
C(37)-Fe(1)	1.746(3)
C(38)-C(43)	1.363(5)
C(38)-C(39)	1.381(5)
C(38)-H(38)	0.9500
C(39)-C(40)	1.368(5)
C(39)-H(39)	0.9500
C(40)-C(41)	1.382(6)
C(40)-H(40)	0.9500
C(41)-C(42)	1.389(6)
C(41)-H(41)	0.9500
C(42)-C(43)	1.386(5)
C(42)-H(42)	0.9500
C(43)-H(43)	0.9500
C(44)-C(46)	1.338(7)
C(44)-C(45)	1.357(7)
C(44)-H(44)	0.9500
C(45)-C(46)#1	1.357(7)
C(45)-H(45)	0.9500
C(46)-C(45)#1	1.357(7)
C(46)-H(46)	0.9500
Fe(1)-N(1)	1.925(2)

N(1)-C(1)-C(17)	122.9(3)
N(1)-C(1)-N(2)	108.3(2)
C(17)-C(1)-N(2)	128.7(3)
N(3)-C(2)-N(2)	102.2(2)
N(3)-C(2)-Fe(1)	142.0(2)
N(2)-C(2)-Fe(1)	115.8(2)
C(4)-C(3)-N(3)	108.3(3)
C(4)-C(3)-H(3)	125.9
N(3)-C(3)-H(3)	125.9
C(3)-C(4)-N(2)	106.4(3)
C(3)-C(4)-H(4)	126.8
N(2)-C(4)-H(4)	126.8
C(6)-C(5)-C(10)	122.5(3)
C(6)-C(5)-N(3)	118.4(3)
C(10)-C(5)-N(3)	119.1(3)
C(7)-C(6)-C(5)	117.6(3)
C(7)-C(6)-C(14)	121.3(3)
C(5)-C(6)-C(14)	121.1(3)
C(8)-C(7)-C(6)	121.0(3)
C(8)-C(7)-H(7)	119.5
C(6)-C(7)-H(7)	119.5
C(9)-C(8)-C(7)	120.2(3)
C(9)-C(8)-H(8)	119.9
C(7)-C(8)-H(8)	119.9
C(8)-C(9)-C(10)	121.5(3)
C(8)-C(9)-H(9)	119.2
С(10)-С(9)-Н(9)	119.2
C(9)-C(10)-C(5)	117.1(3)
C(9)-C(10)-C(11)	121.9(3)
C(5)-C(10)-C(11)	121.0(3)
C(10)-C(11)-C(12)	114.2(3)
C(10)-C(11)-C(13)	110.0(3)
C(12)-C(11)-C(13)	109.2(3)
С(10)-С(11)-Н(11)	107.7
С(12)-С(11)-Н(11)	107.7
С(13)-С(11)-Н(11)	107.7
С(11)-С(12)-Н(12А)	109.5
С(11)-С(12)-Н(12В)	109.5

H(12A)-C(12)-H(12B)	109.5
С(11)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
С(11)-С(13)-Н(13А)	109.5
С(11)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(11)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(6)-C(14)-C(16)	113.6(3)
C(6)-C(14)-C(15)	109.9(3)
C(16)-C(14)-C(15)	109.0(3)
C(6)-C(14)-H(14)	108.1
C(16)-C(14)-H(14)	108.1
C(15)-C(14)-H(14)	108.1
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
С(14)-С(16)-Н(16С)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(1)-C(17)-C(18)	117.9(3)
С(1)-С(17)-Н(17)	121.0
С(18)-С(17)-Н(17)	121.0
C(17)-C(18)-C(19)	120.6(3)
C(17)-C(18)-H(18)	119.7
C(19)-C(18)-H(18)	119.7
C(20)-C(19)-C(18)	117.9(3)
C(20)-C(19)-H(19)	121.0
C(18)-C(19)-H(19)	121.0
N(1)-C(20)-C(19)	122.8(3)

N(1)-C(20)-N(4)	108.3(2)
C(19)-C(20)-N(4)	128.9(3)
N(5)-C(21)-N(4)	102.2(3)
N(5)-C(21)-Fe(1)	142.6(2)
N(4)-C(21)-Fe(1)	115.2(2)
C(23)-C(22)-N(5)	107.8(3)
C(23)-C(22)-H(22)	126.1
N(5)-C(22)-H(22)	126.1
C(22)-C(23)-N(4)	106.1(3)
С(22)-С(23)-Н(23)	126.9
N(4)-C(23)-H(23)	126.9
C(25)-C(24)-C(29)	122.9(3)
C(25)-C(24)-N(5)	118.3(3)
C(29)-C(24)-N(5)	118.8(3)
C(24)-C(25)-C(26)	117.4(3)
C(24)-C(25)-C(33)	122.6(3)
C(26)-C(25)-C(33)	119.9(3)
C(27)-C(26)-C(25)	121.1(3)
C(27)-C(26)-H(26)	119.5
C(25)-C(26)-H(26)	119.5
C(26)-C(27)-C(28)	120.0(3)
С(26)-С(27)-Н(27)	120.0
С(28)-С(27)-Н(27)	120.0
C(27)-C(28)-C(29)	121.8(3)
C(27)-C(28)-H(28)	119.1
C(29)-C(28)-H(28)	119.1
C(28)-C(29)-C(24)	116.8(3)
C(28)-C(29)-C(30)	122.0(3)
C(24)-C(29)-C(30)	121.2(3)
C(29)-C(30)-C(31)	110.6(3)
C(29)-C(30)-C(32)	113.8(3)
C(31)-C(30)-C(32)	109.0(3)
С(29)-С(30)-Н(30)	107.7
С(31)-С(30)-Н(30)	107.7
С(32)-С(30)-Н(30)	107.7
C(30)-C(31)-H(31A)	109.5
C(30)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5

C(30)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(30)-C(32)-H(32A)	109.5
C(30)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(30)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(25)-C(33)-C(35)	112.7(3)
C(25)-C(33)-C(34)	110.4(3)
C(35)-C(33)-C(34)	110.4(3)
С(25)-С(33)-Н(33)	107.7
C(35)-C(33)-H(33)	107.7
C(34)-C(33)-H(33)	107.7
C(33)-C(34)-H(34A)	109.5
C(33)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
C(33)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(33)-C(35)-H(35A)	109.5
C(33)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
C(33)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
O(1)-C(36)-Fe(1)	176.2(3)
O(2)-C(37)-Fe(1)	176.3(3)
C(43)-C(38)-C(39)	120.0(4)
C(43)-C(38)-H(38)	120.0
C(39)-C(38)-H(38)	120.0
C(40)-C(39)-C(38)	120.6(4)
C(40)-C(39)-H(39)	119.7
C(38)-C(39)-H(39)	119.7
C(39)-C(40)-C(41)	119.5(4)
C(39)-C(40)-H(40)	120.3
C(41)-C(40)-H(40)	120.3

C(40)-C(41)-C(42)	120.3(4)
C(40)-C(41)-H(41)	119.8
C(42)-C(41)-H(41)	119.8
C(43)-C(42)-C(41)	119.1(4)
C(43)-C(42)-H(42)	120.5
C(41)-C(42)-H(42)	120.5
C(38)-C(43)-C(42)	120.5(4)
C(38)-C(43)-H(43)	119.8
C(42)-C(43)-H(43)	119.8
C(46)-C(44)-C(45)	120.3(4)
C(46)-C(44)-H(44)	119.9
C(45)-C(44)-H(44)	119.9
C(46)#1-C(45)-C(44)	120.1(4)
C(46)#1-C(45)-H(45)	119.9
C(44)-C(45)-H(45)	119.9
C(44)-C(46)-C(45)#1	119.6(4)
C(44)-C(46)-H(46)	120.2
C(45)#1-C(46)-H(46)	120.2
C(37)-Fe(1)-C(36)	99.48(15)
C(37)-Fe(1)-C(2)	96.23(13)
C(36)-Fe(1)-C(2)	98.38(14)
C(37)-Fe(1)-C(21)	96.43(13)
C(36)-Fe(1)-C(21)	100.38(13)
C(2)-Fe(1)-C(21)	155.27(12)
C(37)-Fe(1)-N(1)	144.43(13)
C(36)-Fe(1)-N(1)	116.07(13)
C(2)-Fe(1)-N(1)	78.51(11)
C(21)-Fe(1)-N(1)	78.83(11)
C(1)-N(1)-C(20)	117.8(3)
C(1)-N(1)-Fe(1)	121.2(2)
C(20)-N(1)-Fe(1)	120.9(2)
C(1)-N(2)-C(4)	132.1(2)
C(1)-N(2)-C(2)	115.8(2)
C(4)-N(2)-C(2)	112.0(2)
C(2)-N(3)-C(3)	111.1(2)
C(2)-N(3)-C(5)	123.5(2)
C(3)-N(3)-C(5)	125.3(3)
C(20)-N(4)-C(23)	131.4(3)

C(20)-N(4)-C(21)	116.3(3)
C(23)-N(4)-C(21)	112.2(2)
C(21)-N(5)-C(22)	111.7(2)
C(21)-N(5)-C(24)	124.9(3)
C(22)-N(5)-C(24)	123.4(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	25(2)	18(2)	23(2)	-1(1)	-3(2)	1(2)
C(2)	15(2)	17(2)	24(2)	-4(1)	-7(2)	4(1)
C(3)	24(2)	23(2)	23(2)	4(1)	2(2)	-6(2)
C(4)	26(2)	18(2)	30(2)	2(1)	3(2)	-5(2)
C(5)	19(2)	18(2)	21(2)	3(1)	6(2)	1(1)
C(6)	21(2)	25(2)	16(2)	5(1)	2(1)	-1(2)
C(7)	21(2)	27(2)	28(2)	5(1)	0(2)	7(2)
C(8)	33(2)	20(2)	34(2)	-3(2)	9(2)	6(2)
C(9)	27(2)	22(2)	26(2)	-4(1)	2(2)	-3(2)
C(10)	19(2)	26(2)	19(2)	2(1)	2(2)	-2(2)
C(11)	23(2)	29(2)	24(2)	-7(1)	2(2)	2(2)
C(12)	29(2)	49(2)	42(2)	-2(2)	-9(2)	-5(2)
C(13)	38(2)	38(2)	33(2)	4(2)	-10(2)	2(2)
C(14)	22(2)	32(2)	27(2)	-5(1)	-3(2)	0(2)
C(15)	28(2)	29(2)	34(2)	-2(2)	-1(2)	-2(2)
C(16)	31(2)	48(2)	27(2)	2(2)	-5(2)	-5(2)
C(17)	25(2)	22(2)	35(2)	2(2)	1(2)	-1(2)
C(18)	35(2)	19(2)	40(2)	-6(2)	3(2)	7(2)
C(19)	25(2)	26(2)	32(2)	-4(1)	8(2)	5(2)
C(20)	23(2)	21(2)	22(2)	0(1)	-2(2)	1(2)
C(21)	24(2)	19(2)	20(2)	-1(1)	-5(2)	1(2)
C(22)	24(2)	29(2)	18(2)	1(1)	3(2)	3(2)
C(23)	23(2)	29(2)	24(2)	-2(1)	4(2)	6(2)
C(24)	23(2)	22(2)	19(2)	1(1)	5(2)	1(2)
C(25)	29(2)	26(2)	23(2)	5(1)	-1(2)	3(2)
C(26)	40(2)	26(2)	30(2)	4(2)	-7(2)	8(2)
C(27)	42(2)	20(2)	31(2)	-2(2)	-2(2)	5(2)
C(28)	32(2)	25(2)	28(2)	-6(1)	-2(2)	-1(2)
C(29)	22(2)	27(2)	19(2)	0(1)	2(1)	3(2)
C(30)	27(2)	25(2)	31(2)	-3(1)	-8(2)	-1(2)
C(31)	29(2)	50(2)	44(2)	-11(2)	-12(2)	7(2)
C(32)	37(2)	37(2)	29(2)	1(2)	-8(2)	2(2)
C(33)	48(2)	26(2)	34(2)	-1(2)	-19(2)	6(2)

Table 8. Anisotropic displacement parameters ($\approx^2 x \ 10^3$) for **2**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(34)	46(3)	73(3)	29(2)	-13(2)	-6(2)	14(2)
C(35)	42(2)	48(2)	37(2)	3(2)	-9(2)	-8(2)
C(36)	29(2)	27(2)	23(2)	2(2)	9(2)	3(2)
C(37)	24(2)	24(2)	25(2)	4(1)	6(2)	0(2)
C(38)	43(3)	40(2)	34(2)	-4(2)	3(2)	-9(2)
C(39)	35(3)	55(3)	58(3)	-12(2)	0(2)	-14(2)
C(40)	55(3)	57(3)	46(3)	-11(2)	13(2)	-17(2)
C(41)	98(4)	29(2)	32(2)	-2(2)	-11(3)	-12(2)
C(42)	74(3)	34(2)	67(3)	-5(2)	-29(3)	8(2)
C(43)	52(3)	37(2)	48(3)	-7(2)	0(2)	4(2)
C(44)	127(5)	37(3)	42(3)	6(2)	-14(3)	-36(3)
C(45)	36(3)	37(3)	129(5)	15(3)	-36(3)	3(2)
C(46)	58(4)	33(2)	102(5)	-15(3)	51(3)	-13(3)
Fe(1)	21(1)	17(1)	21(1)	-1(1)	2(1)	2(1)
N(1)	23(2)	20(1)	20(2)	-2(1)	2(1)	1(1)
N(2)	21(2)	19(1)	20(1)	0(1)	2(1)	0(1)
N(3)	20(2)	18(1)	19(1)	0(1)	-1(1)	1(1)
N(4)	22(2)	21(1)	20(2)	-2(1)	2(1)	4(1)
N(5)	23(2)	18(1)	19(1)	-1(1)	1(1)	1(1)
O(1)	29(2)	44(2)	36(2)	6(1)	-3(1)	9(1)
O(2)	45(2)	22(1)	36(1)	-7(1)	13(1)	-2(1)

Structural data for 3

Table 9. Crystal data and structure refinement for **3**

Identification code	3		
Empirical formula	C37 H45 Fe N7		
Formula weight	643.65		
Temperature	120(2) K		
Wavelength	0.71073 ≈		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	$a = 31.84(5) \approx$	$\alpha = 90\infty$.	
	$b = 8.911(12) \approx$	$\beta = 92.3(2)\infty$.	
	$c = 23.56(5) \approx$	$\gamma = 90\infty$.	
Volume	6679(20) ≈ ³		
Z	8		
Density (calculated)	1.280 Mg/m ³		
Absorption coefficient	0.489 mm ⁻¹		
F(000)	2736		
Crystal size	0.24 x 0.20 x 0.04 mm ³		
Theta range for data collection	2.92 to 26.83∞.		
Index ranges	-40<=h<=36, -11<=k<=9, -29<=l<=29		
Reflections collected	32549		
Independent reflections	7073 [R(int) = 0.1619]		
Completeness to theta = 26.83∞	98.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9807 and 0.7105		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7073 / 0 / 414		
Goodness-of-fit on F ²	1.014		
Final R indices [I>2sigma(I)]	R1 = 0.0797, $wR2 = 0.1320$		
R indices (all data)	R1 = 0.1771, wR2 = 0.1614		
Largest diff. peak and hole	0.333 and -0.414 e. \approx^{-3}		

Table 10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($\approx^2 x \ 10^3$) for 04jaw027. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	2973(1)	1149(4)	-397(2)	23(1)
C(2)	3587(1)	2623(5)	-470(2)	24(1)
C(3)	3650(1)	2521(5)	-1435(2)	30(1)
C(4)	3316(1)	1673(5)	-1331(2)	29(1)
C(5)	4152(1)	4184(5)	-908(2)	25(1)
C(6)	4038(1)	5701(5)	-918(2)	29(1)
C(7)	4366(2)	6731(5)	-951(2)	37(1)
C(8)	4776(2)	6272(6)	-967(2)	43(1)
C(9)	4876(2)	4772(6)	-946(2)	39(1)
C(10)	4567(1)	3690(5)	-916(2)	29(1)
C(11)	4678(2)	2036(5)	-895(2)	39(1)
C(12)	5082(2)	1707(6)	-541(2)	53(2)
C(13)	4717(2)	1420(6)	-1499(2)	51(2)
C(14)	3581(1)	6193(5)	-909(2)	31(1)
C(15)	3363(2)	6146(6)	-1499(2)	44(1)
C(16)	3532(2)	7758(5)	-649(2)	51(2)
C(17)	2637(1)	236(5)	-555(2)	28(1)
C(18)	2373(1)	-238(5)	-131(2)	30(1)
C(19)	2455(1)	212(5)	431(2)	28(1)
C(20)	2790(1)	1137(5)	548(2)	23(1)
C(21)	3294(1)	2589(4)	1070(2)	22(1)
C(22)	2982(1)	2572(5)	1939(2)	31(1)
C(23)	2738(1)	1734(5)	1594(2)	29(1)
C(24)	3666(1)	3939(5)	1882(2)	26(1)
C(25)	4008(2)	3161(5)	2121(2)	32(1)
C(26)	4335(2)	3994(6)	2373(2)	41(1)
C(27)	4321(2)	5526(6)	2374(2)	42(1)
C(28)	3980(2)	6287(6)	2122(2)	40(1)
C(29)	3638(1)	5509(5)	1875(2)	30(1)
C(30)	3257(2)	6313(5)	1623(2)	34(1)
C(31)	2916(2)	6494(6)	2063(2)	48(2)
C(32)	3354(2)	7857(5)	1377(2)	55(2)
C(33)	4025(2)	1453(5)	2108(2)	35(1)

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004

C(34)	3830(2)	768(5)	2638(2)	44(1)
C(35)	4466(2)	821(6)	2057(2)	53(2)
C(36)	3958(1)	891(5)	475(2)	37(1)
C(37)	4176(2)	2212(6)	570(2)	42(1)
Fe(1)	3555(1)	2710(1)	347(1)	24(1)
N(1)	3735(1)	4638(5)	432(2)	36(1)
N(2)	3874(2)	5788(5)	489(2)	50(1)
N(3)	3056(1)	1619(4)	147(2)	23(1)
N(4)	3273(1)	1748(4)	-744(2)	25(1)
N(5)	3816(1)	3090(4)	-922(2)	25(1)
N(6)	2924(1)	1740(4)	1068(2)	24(1)
N(7)	3322(1)	3089(4)	1632(2)	24(1)

.

C(1)-N(3)	1.365(6)
C(1)-C(17)	1.382(6)
C(1)-N(4)	1.389(6)
C(2)-N(5)	1.380(6)
C(2)-N(4)	1.403(6)
C(2)-Fe(1)	1.933(6)
C(3)-C(4)	1.334(6)
C(3)-N(5)	1.396(6)
C(3)-H(3)	0.9500
C(4)-N(4)	1.396(6)
C(4)-H(4)	0.9500
C(5)-C(10)	1.394(6)
C(5)-C(6)	1.399(6)
C(5)-N(5)	1.446(5)
C(6)-C(7)	1.396(6)
C(6)-C(14)	1.519(6)
C(7)-C(8)	1.370(7)
C(7)-H(7)	0.9500
C(8)-C(9)	1.375(7)
C(8)-H(8)	0.9500
C(9)-C(10)	1.383(6)
C(9)-H(9)	0.9500
C(10)-C(11)	1.516(7)
C(11)-C(12)	1.533(7)
C(11)-C(13)	1.536(7)
C(11)-H(11)	1.0000
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
С(13)-Н(13С)	0.9800
C(14)-C(15)	1.529(7)
C(14)-C(16)	1.534(6)
C(14)-H(14)	1.0000
C(15)-H(15A)	0.9800

Table11. Bond lengths $[\approx]$ and angles $[\infty]$ for **3**.

C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(18)	1.398(6)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.398(7)
C(18)-H(18)	0.9500
C(19)-C(20)	1.368(6)
С(19)-Н(19)	0.9500
C(20)-N(3)	1.363(6)
C(20)-N(6)	1.387(6)
C(21)-N(7)	1.397(6)
C(21)-N(6)	1.401(5)
C(21)-Fe(1)	1.927(6)
C(22)-C(23)	1.330(6)
C(22)-N(7)	1.403(6)
C(22)-H(22)	0.9500
C(23)-N(6)	1.394(6)
C(23)-H(23)	0.9500
C(24)-C(25)	1.393(6)
C(24)-C(29)	1.402(6)
C(24)-N(7)	1.438(6)
C(25)-C(26)	1.393(7)
C(25)-C(33)	1.523(7)
C(26)-C(27)	1.365(7)
C(26)-H(26)	0.9500
C(27)-C(28)	1.393(7)
C(27)-H(27)	0.9500
C(28)-C(29)	1.398(7)
C(28)-H(28)	0.9500
C(29)-C(30)	1.511(7)
C(30)-C(32)	1.529(6)
C(30)-C(31)	1.539(7)
C(30)-H(30)	1.0000
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800

C(31)-H(31C)	0.9800
C(32)-H(32A)	0.9800
C(32)-H(32B)	0.9800
C(32)-H(32C)	0.9800
C(33)-C(35)	1.523(6)
C(33)-C(34)	1.542(7)
C(33)-H(33)	1.0000
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(36)-C(37)	1.379(6)
C(36)-Fe(1)	2.083(5)
C(36)-H(36A)	0.9900
C(36)-H(36B)	0.9900
C(37)-Fe(1)	2.074(6)
C(37)-H(37A)	0.9900
C(37)-H(37B)	0.9900
Fe(1)-N(1)	1.820(5)
Fe(1)-N(3)	1.905(4)
N(1)-N(2)	1.121(5)
N(3)-C(1)-C(17)	123.5(4)
N(3)-C(1)-N(4)	108.8(4)
C(17)-C(1)-N(4)	127.7(4)
N(5)-C(2)-N(4)	101.6(4)
N(5)-C(2)-Fe(1)	143.8(3)
N(4)-C(2)-Fe(1)	114.5(3)
C(4)-C(3)-N(5)	108.9(4)
C(4)-C(3)-H(3)	125.6
N(5)-C(3)-H(3)	125.6
C(3)-C(4)-N(4)	105.4(4)
C(3)-C(4)-H(4)	127.3
N(4)-C(4)-H(4)	127.3
C(10)-C(5)-C(6)	123.4(4)
C(10)-C(5)-N(5)	119.1(4)

C(6)-C(5)-N(5)	117.4(4)
C(5)-C(6)-C(7)	116.2(4)
C(5)-C(6)-C(14)	121.7(4)
C(7)-C(6)-C(14)	122.0(4)
C(8)-C(7)-C(6)	121.4(5)
C(8)-C(7)-H(7)	119.3
C(6)-C(7)-H(7)	119.3
C(7)-C(8)-C(9)	120.6(5)
C(7)-C(8)-H(8)	119.7
C(9)-C(8)-H(8)	119.7
C(8)-C(9)-C(10)	121.0(5)
C(8)-C(9)-H(9)	119.5
С(10)-С(9)-Н(9)	119.5
C(9)-C(10)-C(5)	117.3(4)
C(9)-C(10)-C(11)	120.9(4)
C(5)-C(10)-C(11)	121.8(4)
C(10)-C(11)-C(12)	113.2(4)
C(10)-C(11)-C(13)	110.2(4)
C(12)-C(11)-C(13)	109.7(4)
С(10)-С(11)-Н(11)	107.9
С(12)-С(11)-Н(11)	107.9
С(13)-С(11)-Н(11)	107.9
С(11)-С(12)-Н(12А)	109.5
С(11)-С(12)-Н(12В)	109.5
H(12A)-C(12)-H(12B)	109.5
С(11)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
С(11)-С(13)-Н(13А)	109.5
С(11)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(11)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(6)-C(14)-C(15)	112.3(4)
C(6)-C(14)-C(16)	112.4(4)
C(15)-C(14)-C(16)	109.8(4)
C(6)-C(14)-H(14)	107.4

C(15)-C(14)-H(14)	107.4
C(16)-C(14)-H(14)	107.4
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(14)-C(16)-H(16A)	109.5
C(14)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(14)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(1)-C(17)-C(18)	117.9(5)
С(1)-С(17)-Н(17)	121.1
С(18)-С(17)-Н(17)	121.1
C(19)-C(18)-C(17)	119.7(4)
C(19)-C(18)-H(18)	120.2
C(17)-C(18)-H(18)	120.2
C(20)-C(19)-C(18)	118.7(4)
C(20)-C(19)-H(19)	120.7
C(18)-C(19)-H(19)	120.7
N(3)-C(20)-C(19)	123.4(4)
N(3)-C(20)-N(6)	108.3(4)
C(19)-C(20)-N(6)	128.3(4)
N(7)-C(21)-N(6)	101.3(4)
N(7)-C(21)-Fe(1)	143.8(3)
N(6)-C(21)-Fe(1)	114.8(3)
C(23)-C(22)-N(7)	108.2(4)
С(23)-С(22)-Н(22)	125.9
N(7)-C(22)-H(22)	125.9
C(22)-C(23)-N(6)	106.5(4)
C(22)-C(23)-H(23)	126.8
N(6)-C(23)-H(23)	126.8
C(25)-C(24)-C(29)	123.3(4)
C(25)-C(24)-N(7)	118.3(4)
C(29)-C(24)-N(7)	118.3(4)

C(24)-C(25)-C(26)	117.8(5)
C(24)-C(25)-C(33)	121.1(4)
C(26)-C(25)-C(33)	121.0(5)
C(27)-C(26)-C(25)	120.6(5)
C(27)-C(26)-H(26)	119.7
C(25)-C(26)-H(26)	119.7
C(26)-C(27)-C(28)	120.8(5)
С(26)-С(27)-Н(27)	119.6
С(28)-С(27)-Н(27)	119.6
C(27)-C(28)-C(29)	121.1(5)
C(27)-C(28)-H(28)	119.5
C(29)-C(28)-H(28)	119.5
C(28)-C(29)-C(24)	116.3(4)
C(28)-C(29)-C(30)	121.9(4)
C(24)-C(29)-C(30)	121.8(4)
C(29)-C(30)-C(32)	113.8(4)
C(29)-C(30)-C(31)	111.2(4)
C(32)-C(30)-C(31)	108.7(4)
С(29)-С(30)-Н(30)	107.7
С(32)-С(30)-Н(30)	107.7
С(31)-С(30)-Н(30)	107.7
C(30)-C(31)-H(31A)	109.5
C(30)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5
С(30)-С(31)-Н(31С)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(30)-C(32)-H(32A)	109.5
C(30)-C(32)-H(32B)	109.5
H(32A)-C(32)-H(32B)	109.5
C(30)-C(32)-H(32C)	109.5
H(32A)-C(32)-H(32C)	109.5
H(32B)-C(32)-H(32C)	109.5
C(25)-C(33)-C(35)	113.8(4)
C(25)-C(33)-C(34)	111.4(4)
C(35)-C(33)-C(34)	108.7(4)
C(25)-C(33)-H(33)	107.6
С(35)-С(33)-Н(33)	107.6

C(34)-C(33)-H(33)	107.6
C(33)-C(34)-H(34A)	109.5
C(33)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
C(33)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(33)-C(35)-H(35A)	109.5
C(33)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5
С(33)-С(35)-Н(35С)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(37)-C(36)-Fe(1)	70.3(3)
C(37)-C(36)-H(36A)	116.6
Fe(1)-C(36)-H(36A)	116.6
C(37)-C(36)-H(36B)	116.6
Fe(1)-C(36)-H(36B)	116.6
H(36A)-C(36)-H(36B)	113.6
C(36)-C(37)-Fe(1)	71.0(3)
С(36)-С(37)-Н(37А)	116.5
Fe(1)-C(37)-H(37A)	116.5
C(36)-C(37)-H(37B)	116.5
Fe(1)-C(37)-H(37B)	116.5
H(37A)-C(37)-H(37B)	113.5
N(1)-Fe(1)-N(3)	139.96(17)
N(1)-Fe(1)-C(21)	95.79(18)
N(3)-Fe(1)-C(21)	78.8(2)
N(1)-Fe(1)-C(2)	96.81(19)
N(3)-Fe(1)-C(2)	79.1(2)
C(21)-Fe(1)-C(2)	156.84(19)
N(1)-Fe(1)-C(37)	83.1(2)
N(3)-Fe(1)-C(37)	136.9(2)
C(21)-Fe(1)-C(37)	101.8(2)
C(2)-Fe(1)-C(37)	98.9(3)
N(1)-Fe(1)-C(36)	121.9(2)
N(3)-Fe(1)-C(36)	98.2(2)
C(21)-Fe(1)-C(36)	96.5(2)

C(2)-Fe(1)-C(36)	93.2(2)
C(37)-Fe(1)-C(36)	38.75(17)
N(2)-N(1)-Fe(1)	175.3(4)
C(20)-N(3)-C(1)	116.9(4)
C(20)-N(3)-Fe(1)	121.6(3)
C(1)-N(3)-Fe(1)	121.2(3)
C(1)-N(4)-C(4)	131.3(4)
C(1)-N(4)-C(2)	115.9(4)
C(4)-N(4)-C(2)	112.7(4)
C(2)-N(5)-C(3)	111.4(4)
C(2)-N(5)-C(5)	126.8(4)
C(3)-N(5)-C(5)	121.3(4)
C(20)-N(6)-C(23)	131.1(4)
C(20)-N(6)-C(21)	116.1(4)
C(23)-N(6)-C(21)	112.7(4)
C(21)-N(7)-C(22)	111.3(4)
C(21)-N(7)-C(24)	125.0(4)
C(22)-N(7)-C(24)	123.6(4)

Symmetry transformations used to generate equivalent atoms:

Table 12.	Anisotropic displacement parameters ($\approx^2 x \ 10^3$) for 3 . T	he anisotropi	с
displaceme	ent factor exponent takes the form: $-2\pi^2$ [h ² a ^{*2} U ¹¹ + +	- 2 h k a* b* U	U ¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	23(3)	24(2)	22(3)	0(2)	0(2)	5(2)
C(2)	22(2)	27(2)	25(3)	-1(2)	2(2)	4(2)
C(3)	34(3)	43(3)	13(2)	0(2)	5(2)	-5(2)
C(4)	33(3)	36(3)	19(3)	-8(2)	4(2)	3(2)
C(5)	27(3)	38(3)	11(2)	1(2)	3(2)	-7(2)
C(6)	29(3)	34(3)	22(3)	3(2)	-1(2)	-4(2)
C(7)	43(3)	38(3)	30(3)	4(2)	-2(2)	-5(3)
C(8)	27(3)	62(4)	42(4)	1(3)	-1(3)	-17(3)
C(9)	23(3)	61(4)	33(3)	-1(3)	4(2)	-1(3)
C(10)	25(3)	41(3)	20(3)	-1(2)	5(2)	0(2)
C(11)	32(3)	51(3)	35(3)	2(3)	9(2)	11(2)
C(12)	48(4)	68(4)	42(4)	8(3)	-4(3)	21(3)
C(13)	47(3)	55(3)	50(4)	-5(3)	-1(3)	16(3)
C(14)	32(3)	30(3)	31(3)	6(2)	3(2)	-1(2)
C(15)	35(3)	54(3)	44(4)	16(3)	-1(3)	3(3)
C(16)	58(4)	39(3)	56(4)	6(3)	12(3)	10(3)
C(17)	29(3)	30(3)	26(3)	-5(2)	-5(2)	0(2)
C(18)	21(3)	32(3)	38(3)	2(2)	-1(2)	-8(2)
C(19)	22(3)	29(3)	31(3)	5(2)	-2(2)	-3(2)
C(20)	20(2)	26(2)	25(3)	0(2)	4(2)	2(2)
C(21)	28(2)	21(2)	18(2)	-1(2)	-2(2)	1(2)
C(22)	28(3)	40(3)	25(3)	6(2)	10(2)	5(2)
C(23)	22(3)	41(3)	24(3)	3(2)	6(2)	-4(2)
C(24)	29(3)	35(3)	14(3)	-2(2)	6(2)	-6(2)
C(25)	33(3)	44(3)	17(3)	-1(2)	1(2)	3(2)
C(26)	29(3)	59(4)	36(3)	-14(3)	-4(2)	4(3)
C(27)	35(3)	54(4)	38(4)	-20(3)	3(3)	-17(3)
C(28)	42(3)	40(3)	38(3)	-15(3)	3(3)	-6(3)
C(29)	34(3)	35(3)	20(3)	-5(2)	8(2)	-1(2)
C(30)	48(3)	32(3)	23(3)	-4(2)	-3(2)	5(2)
C(31)	47(3)	55(3)	42(4)	-2(3)	1(3)	15(3)
C(32)	80(4)	37(3)	48(4)	3(3)	7(3)	12(3)
C(33)	38(3)	37(3)	29(3)	4(2)	3(2)	7(2)

C(34)	55(4)	40(3)	35(3)	1(2)	7(3)	6(3)
C(35)	49(4)	57(4)	53(4)	16(3)	11(3)	25(3)
C(36)	32(3)	39(3)	40(3)	3(2)	3(3)	8(2)
C(37)	34(3)	68(4)	23(3)	0(3)	2(2)	5(3)
Fe(1)	25(1)	27(1)	19(1)	-1(1)	1(1)	-2(1)
N(1)	44(3)	41(3)	23(3)	-2(2)	10(2)	-5(2)
N(2)	77(4)	42(3)	32(3)	-8(2)	12(2)	-21(3)
N(3)	26(2)	24(2)	20(2)	-2(2)	3(2)	1(2)
N(4)	27(2)	30(2)	17(2)	0(2)	0(2)	1(2)
N(5)	24(2)	31(2)	19(2)	-3(2)	2(2)	1(2)
N(6)	22(2)	31(2)	18(2)	3(2)	1(2)	1(2)
N(7)	21(2)	31(2)	19(2)	2(2)	1(2)	-1(2)

Structural data for 4

Table 13. Crystal data and structure refinement for 4

Identification code	4	
Empirical formula	C42 H60 Fe N7 O P	
Formula weight	765.79	
Temperature	120(2) K	
Wavelength	0.71073 ≈	
Crystal system	Orthorhombic	
Space group	Pna21	
Unit cell dimensions	$a = 18.2286(17) \approx$	α =90∞.
	$b = 17.4745(18) \approx$	β=90∞.
	$c = 13.7220(15) \approx$	$\gamma = 90\infty$.
Volume	4370.9(8) ≈ ³	
Z	4	
Density (calculated)	1.164 Mg/m ³	
Absorption coefficient	0.420 mm ⁻¹	
F(000)	1640	
Crystal size	0.40 x 0.40 x 0.06 mm ³	
Theta range for data collection	2.98 to 27.57∞.	
Index ranges	-23<=h<=14, -20<=k<=22, -17<=l<=17	
Reflections collected	24392	
Independent reflections	9009 [R(int) = 0.0501]	
Completeness to theta = 27.57∞	98.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9752 and 0.8500	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9009 / 9 / 487	
Goodness-of-fit on F ²	1.017	
Final R indices [I>2sigma(I)]	R1 = 0.0517, $wR2 = 0.1146$	
R indices (all data)	R1 = 0.0776, WR2 = 0.1249	
Absolute structure parameter	0.036(16)	
Largest diff. peak and hole	$0.716 \text{ and } -0.414 \text{ e.} \approx^{-3}$	

Table 14. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($\approx^2 x \ 10^3$) for 4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	2381(2)	5317(2)	2985(3)	45(1)
C(2)	3268(2)	4537(3)	4338(3)	48(1)
C(3)	1746(2)	4280(3)	4258(3)	51(1)
C(4)	1595(2)	4151(2)	1121(3)	25(1)
C(5)	1089(2)	3288(2)	2234(3)	24(1)
C(6)	2076(2)	2691(2)	3022(2)	24(1)
C(7)	1437(2)	1809(2)	3921(3)	30(1)
C(8)	932(2)	2220(2)	3462(3)	29(1)
C(9)	2807(2)	1656(2)	3772(3)	29(1)
C(10)	2979(2)	1126(2)	3052(3)	30(1)
C(11)	2451(2)	925(2)	2224(3)	33(1)
C(12)	2747(2)	1218(3)	1256(3)	45(1)
C(13)	2304(2)	62(2)	2186(3)	41(1)
C(14)	3655(2)	768(2)	3103(3)	34(1)
C(15)	4140(2)	931(2)	3846(3)	39(1)
C(16)	3949(2)	1434(2)	4565(3)	41(1)
C(17)	3283(2)	1821(2)	4533(3)	33(1)
C(18)	3079(3)	2386(2)	5329(3)	48(1)
C(19)	3731(3)	2806(3)	5750(4)	63(1)
C(20)	2661(3)	1977(4)	6139(4)	75(2)
C(21)	385(2)	3479(2)	1934(3)	29(1)
C(22)	309(2)	4029(2)	1221(3)	31(1)
C(23)	921(2)	4379(2)	801(3)	27(1)
C(24)	2497(2)	4843(2)	22(3)	30(1)
C(25)	3226(2)	4797(2)	-16(3)	30(1)
C(26)	2884(2)	4042(2)	1278(3)	23(1)
C(27)	4206(2)	4035(2)	793(3)	26(1)
C(28)	4388(2)	3392(2)	263(3)	34(1)
C(29)	3825(2)	2962(2)	-356(3)	35(1)
C(30)	3935(2)	2104(2)	-317(4)	53(1)
C(31)	3840(3)	3217(3)	-1422(3)	52(1)
C(32)	5102(2)	3119(2)	319(3)	43(1)
C(33)	5616(2)	3485(3)	883(4)	48(1)

C(34)	5423(2)	4113(3)	1419(3)	44(1)
C(35)	4720(2)	4403(2)	1389(3)	38(1)
C(36)	4505(2)	5091(3)	2003(4)	56(1)
C(37)	4928(3)	5133(3)	2971(4)	71(2)
C(38)	4605(4)	5825(3)	1433(5)	92(2)
C(39)	-1836(3)	7299(4)	4203(5)	98(2)
C(40)	-1355(4)	7230(6)	3395(5)	149(4)
C(41)	-354(4)	6508(5)	2349(6)	160(4)
C(42)	214(3)	5924(4)	2472(6)	37(1)
C(43)	-354(4)	6508(5)	2349(6)	160(4)
C(44)	-790(4)	6579(5)	1442(6)	37(1)
Fe(1)	2634(1)	3440(1)	2365(1)	20(1)
N(1)	3469(1)	4327(2)	734(2)	25(1)
N(2)	2285(1)	4387(2)	800(2)	23(1)
N(3)	1699(1)	3629(2)	1840(2)	22(1)
N(4)	1314(1)	2757(2)	2903(2)	24(1)
N(5)	2131(2)	2090(2)	3671(2)	26(1)
N(6)	3528(2)	3084(2)	2626(2)	26(1)
N(7)	4097(2)	2872(2)	2806(2)	37(1)
P(1)	2539(1)	4351(1)	3454(1)	28(1)
O(1)	-845(4)	6616(5)	3233(6)	183(3)

C(1)-P(1)	1.830(4)
C(1)-H(1A)	0.9800
C(1)-H(1B)	0.9800
C(1)-H(1C)	0.9800
C(2)-P(1)	1.828(4)
C(2)-H(2A)	0.9800
C(2)-H(2B)	0.9800
C(2)-H(2C)	0.9800
C(3)-P(1)	1.823(4)
C(3)-H(3A)	0.9800
C(3)-H(3B)	0.9800
C(3)-H(3C)	0.9800
C(4)-N(3)	1.358(4)
C(4)-C(23)	1.363(5)
C(4)-N(2)	1.396(4)
C(5)-N(4)	1.368(4)
C(5)-N(3)	1.372(4)
C(5)-C(21)	1.387(4)
C(6)-N(5)	1.380(4)
C(6)-N(4)	1.403(4)
C(6)-Fe(1)	1.888(3)
C(7)-C(8)	1.328(5)
C(7)-N(5)	1.400(4)
C(7)-H(7)	0.9500
C(8)-N(4)	1.397(4)
C(8)-H(8)	0.9500
C(9)-C(17)	1.388(5)
C(9)-C(10)	1.391(5)
C(9)-N(5)	1.453(4)
C(10)-C(14)	1.383(5)
C(10)-C(11)	1.529(5)
C(11)-C(12)	1.523(5)
C(11)-C(13)	1.532(5)
C(11)-H(11)	1.0000
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800

Table 15. Bond lengths $[\approx]$ and angles $[\infty]$ for **4**.

C(12)-H(12C)	0.9800
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-C(15)	1.380(5)
C(14)-H(14)	0.9500
C(15)-C(16)	1.366(6)
С(15)-Н(15)	0.9500
C(16)-C(17)	1.390(5)
С(16)-Н(16)	0.9500
C(17)-C(18)	1.518(6)
C(18)-C(19)	1.511(6)
C(18)-C(20)	1.526(7)
C(18)-H(18)	1.0000
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(22)	1.379(5)
C(21)-H(21)	0.9500
C(22)-C(23)	1.396(5)
C(22)-H(22)	0.9500
C(23)-H(23)	0.9500
C(24)-C(25)	1.331(5)
C(24)-N(2)	1.387(5)
C(24)-H(24)	0.9500
C(25)-N(1)	1.389(4)
C(25)-H(25)	0.9500
C(26)-N(1)	1.394(4)
C(26)-N(2)	1.410(4)
C(26)-Fe(1)	1.881(3)
C(27)-C(28)	1.379(5)
C(27)-C(35)	1.399(5)
C(27)-N(1)	1.441(4)
C(28)-C(32)	1.389(5)
C(28)-C(29)	1.529(5)

C(29)-C(30)	1.513(5)
C(29)-C(31)	1.529(6)
C(29)-H(29)	1.0000
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-H(31A)	0.9800
C(31)-H(31B)	0.9800
C(31)-H(31C)	0.9800
C(32)-C(33)	1.373(6)
C(32)-H(32)	0.9500
C(33)-C(34)	1.367(6)
C(33)-H(33)	0.9500
C(34)-C(35)	1.379(5)
C(34)-H(34)	0.9500
C(35)-C(36)	1.520(6)
C(36)-C(38)	1.514(7)
C(36)-C(37)	1.538(7)
C(36)-H(36)	1.0000
C(37)-H(37A)	0.9800
C(37)-H(37B)	0.9800
C(37)-H(37C)	0.9800
C(38)-H(38A)	0.9800
C(38)-H(38B)	0.9800
C(38)-H(38C)	0.9800
C(39)-C(40)	1.419(6)
C(39)-H(39A)	0.9800
C(39)-H(39B)	0.9800
C(39)-H(39C)	0.9800
C(40)-O(1)	1.436(10)
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-C(42)	1.463(7)
C(41)-O(1)	1.520(10)
C(41)-H(41A)	0.9900
C(41)-H(41B)	0.9900
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800

C(42)-H(42C)	0.9800
C(44)-H(44A)	0.9800
C(44)-H(44B)	0.9800
C(44)-H(44C)	0.9800
Fe(1)-N(6)	1.779(3)
Fe(1)-N(3)	1.880(3)
Fe(1)-P(1)	2.1898(11)
N(6)-N(7)	1.129(4)
P(1)-C(1)-H(1A)	109.5
P(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
P(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
P(1)-C(2)-H(2A)	109.5
P(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
P(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
P(1)-C(3)-H(3A)	109.5
P(1)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
P(1)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
N(3)-C(4)-C(23)	123.8(3)
N(3)-C(4)-N(2)	107.5(3)
C(23)-C(4)-N(2)	128.7(3)
N(4)-C(5)-N(3)	108.3(3)
N(4)-C(5)-C(21)	129.7(3)
N(3)-C(5)-C(21)	121.9(3)
N(5)-C(6)-N(4)	102.2(3)
N(5)-C(6)-Fe(1)	142.7(2)
N(4)-C(6)-Fe(1)	114.9(2)
C(8)-C(7)-N(5)	108.6(3)
C(8)-C(7)-H(7)	125.7

N(5)-C(7)-H(7)	125.7
C(7)-C(8)-N(4)	106.2(3)
C(7)-C(8)-H(8)	126.9
N(4)-C(8)-H(8)	126.9
C(17)-C(9)-C(10)	122.1(3)
C(17)-C(9)-N(5)	119.6(3)
C(10)-C(9)-N(5)	118.1(3)
C(14)-C(10)-C(9)	117.8(3)
C(14)-C(10)-C(11)	119.6(3)
C(9)-C(10)-C(11)	122.6(3)
C(12)-C(11)-C(10)	110.4(3)
C(12)-C(11)-C(13)	111.3(3)
C(10)-C(11)-C(13)	111.2(3)
С(12)-С(11)-Н(11)	108.0
С(10)-С(11)-Н(11)	108.0
С(13)-С(11)-Н(11)	108.0
С(11)-С(12)-Н(12А)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
С(11)-С(12)-Н(12С)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
С(11)-С(13)-Н(13А)	109.5
С(11)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(11)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(15)-C(14)-C(10)	121.0(4)
C(15)-C(14)-H(14)	119.5
C(10)-C(14)-H(14)	119.5
C(16)-C(15)-C(14)	120.2(3)
C(16)-C(15)-H(15)	119.9
C(14)-C(15)-H(15)	119.9
C(15)-C(16)-C(17)	120.9(4)
С(15)-С(16)-Н(16)	119.6
C(17)-C(16)-H(16)	119.6
C(9)-C(17)-C(16)	118.0(4)

C(9)-C(17)-C(18)	121.5(3)
C(16)-C(17)-C(18)	120.5(4)
C(19)-C(18)-C(17)	113.5(4)
C(19)-C(18)-C(20)	110.0(4)
C(17)-C(18)-C(20)	110.0(4)
C(19)-C(18)-H(18)	107.7
C(17)-C(18)-H(18)	107.7
C(20)-C(18)-H(18)	107.7
C(18)-C(19)-H(19A)	109.5
C(18)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
С(18)-С(19)-Н(19С)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(18)-C(20)-H(20A)	109.5
C(18)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(18)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(22)-C(21)-C(5)	118.1(3)
С(22)-С(21)-Н(21)	121.0
C(5)-C(21)-H(21)	121.0
C(21)-C(22)-C(23)	121.2(3)
С(21)-С(22)-Н(22)	119.4
С(23)-С(22)-Н(22)	119.4
C(4)-C(23)-C(22)	117.3(3)
C(4)-C(23)-H(23)	121.3
С(22)-С(23)-Н(23)	121.3
C(25)-C(24)-N(2)	105.9(3)
C(25)-C(24)-H(24)	127.0
N(2)-C(24)-H(24)	127.0
C(24)-C(25)-N(1)	108.9(3)
C(24)-C(25)-H(25)	125.5
N(1)-C(25)-H(25)	125.5
N(1)-C(26)-N(2)	100.9(3)
N(1)-C(26)-Fe(1)	144.1(3)
N(2)-C(26)-Fe(1)	114.9(2)

C(28)-C(27)-C(35)	121.5(3)
C(28)-C(27)-N(1)	118.9(3)
C(35)-C(27)-N(1)	119.6(3)
C(27)-C(28)-C(32)	118.4(4)
C(27)-C(28)-C(29)	122.2(3)
C(32)-C(28)-C(29)	119.4(4)
C(30)-C(29)-C(28)	112.3(3)
C(30)-C(29)-C(31)	108.7(4)
C(28)-C(29)-C(31)	112.1(3)
C(30)-C(29)-H(29)	107.8
С(28)-С(29)-Н(29)	107.8
С(31)-С(29)-Н(29)	107.8
C(29)-C(30)-H(30A)	109.5
C(29)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30B)	109.5
С(29)-С(30)-Н(30С)	109.5
H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
C(29)-C(31)-H(31A)	109.5
C(29)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5
С(29)-С(31)-Н(31С)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(33)-C(32)-C(28)	120.8(4)
С(33)-С(32)-Н(32)	119.6
C(28)-C(32)-H(32)	119.6
C(34)-C(33)-C(32)	120.1(4)
С(34)-С(33)-Н(33)	120.0
С(32)-С(33)-Н(33)	120.0
C(33)-C(34)-C(35)	121.2(4)
C(33)-C(34)-H(34)	119.4
C(35)-C(34)-H(34)	119.4
C(34)-C(35)-C(27)	118.1(4)
C(34)-C(35)-C(36)	120.9(4)
C(27)-C(35)-C(36)	121.0(3)
C(38)-C(36)-C(35)	110.6(4)
C(38)-C(36)-C(37)	110.2(4)

C(35)-C(36)-C(37)	112.8(4)
C(38)-C(36)-H(36)	107.7
C(35)-C(36)-H(36)	107.7
С(37)-С(36)-Н(36)	107.7
C(36)-C(37)-H(37A)	109.5
C(36)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37B)	109.5
С(36)-С(37)-Н(37С)	109.5
H(37A)-C(37)-H(37C)	109.5
H(37B)-C(37)-H(37C)	109.5
C(36)-C(38)-H(38A)	109.5
C(36)-C(38)-H(38B)	109.5
H(38A)-C(38)-H(38B)	109.5
C(36)-C(38)-H(38C)	109.5
H(38A)-C(38)-H(38C)	109.5
H(38B)-C(38)-H(38C)	109.5
C(40)-C(39)-H(39A)	109.5
C(40)-C(39)-H(39B)	109.5
H(39A)-C(39)-H(39B)	109.5
C(40)-C(39)-H(39C)	109.5
H(39A)-C(39)-H(39C)	109.5
H(39B)-C(39)-H(39C)	109.5
C(39)-C(40)-O(1)	125.7(9)
C(39)-C(40)-H(40A)	105.9
O(1)-C(40)-H(40A)	105.9
C(39)-C(40)-H(40B)	105.9
O(1)-C(40)-H(40B)	105.9
H(40A)-C(40)-H(40B)	106.2
C(42)-C(41)-O(1)	114.3(7)
C(42)-C(41)-H(41A)	108.7
O(1)-C(41)-H(41A)	108.7
C(42)-C(41)-H(41B)	108.7
O(1)-C(41)-H(41B)	108.7
H(41A)-C(41)-H(41B)	107.6
H(44A)-C(44)-H(44B)	109.5
H(44A)-C(44)-H(44C)	109.5
H(44B)-C(44)-H(44C)	109.5
N(6)-Fe(1)-N(3)	165.47(13)

N(6)-Fe(1)-C(26)	97.64(14)
N(3)-Fe(1)-C(26)	79.50(13)
N(6)-Fe(1)-C(6)	98.92(13)
N(3)-Fe(1)-C(6)	79.36(13)
C(26)-Fe(1)-C(6)	153.76(15)
N(6)-Fe(1)-P(1)	100.95(10)
N(3)-Fe(1)-P(1)	93.58(9)
C(26)-Fe(1)-P(1)	98.89(11)
C(6)-Fe(1)-P(1)	97.79(11)
C(25)-N(1)-C(26)	111.4(3)
C(25)-N(1)-C(27)	123.3(3)
C(26)-N(1)-C(27)	123.8(3)
C(24)-N(2)-C(4)	131.6(3)
C(24)-N(2)-C(26)	112.8(3)
C(4)-N(2)-C(26)	115.2(3)
C(4)-N(3)-C(5)	117.6(3)
C(4)-N(3)-Fe(1)	121.6(2)
C(5)-N(3)-Fe(1)	120.5(2)
C(5)-N(4)-C(8)	132.4(3)
C(5)-N(4)-C(6)	115.6(3)
C(8)-N(4)-C(6)	111.9(3)
C(6)-N(5)-C(7)	111.1(3)
C(6)-N(5)-C(9)	121.4(3)
C(7)-N(5)-C(9)	124.0(3)
N(7)-N(6)-Fe(1)	178.4(3)
C(3)-P(1)-C(2)	100.8(2)
C(3)-P(1)-C(1)	98.7(2)
C(2)-P(1)-C(1)	100.6(2)
C(3)-P(1)-Fe(1)	115.24(15)
C(2)-P(1)-Fe(1)	121.59(16)
C(1)-P(1)-Fe(1)	116.27(16)
C(40)-O(1)-C(41)	126.7(8)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	53(2)	32(2)	49(3)	-2(2)	2(2)	11(2)
C(2)	57(3)	48(3)	38(2)	-10(2)	-17(2)	1(2)
C(3)	56(3)	46(3)	49(3)	-10(2)	18(2)	-5(2)
C(4)	23(2)	24(2)	27(2)	-1(2)	5(1)	4(1)
C(5)	19(1)	26(2)	26(2)	1(2)	1(1)	0(1)
C(6)	26(2)	24(2)	22(2)	1(2)	1(1)	2(1)
C(7)	25(2)	34(2)	31(2)	13(2)	5(2)	-3(2)
C(8)	25(2)	25(2)	37(2)	7(2)	7(2)	-3(1)
C(9)	20(2)	35(2)	32(2)	15(2)	1(1)	2(1)
C(10)	28(2)	34(2)	28(2)	11(2)	5(2)	2(2)
C(11)	30(2)	46(2)	23(2)	2(2)	-1(2)	9(1)
C(12)	61(3)	47(3)	27(2)	6(2)	1(2)	8(2)
C(13)	43(2)	43(2)	36(3)	6(2)	0(2)	-2(2)
C(14)	27(2)	42(2)	33(2)	13(2)	8(2)	7(2)
C(15)	22(2)	49(3)	46(2)	20(2)	4(2)	2(2)
C(16)	34(2)	47(3)	41(2)	22(2)	-11(2)	-9(2)
C(17)	33(2)	35(2)	32(2)	12(2)	-4(2)	-7(2)
C(18)	58(3)	40(3)	48(3)	3(2)	-18(2)	-3(2)
C(19)	78(4)	56(3)	54(3)	0(3)	-36(3)	-8(3)
C(20)	84(4)	87(4)	53(3)	-16(3)	17(3)	-12(3)
C(21)	18(2)	30(2)	39(2)	-1(2)	2(1)	1(1)
C(22)	20(2)	30(2)	44(2)	2(2)	-3(2)	5(1)
C(23)	27(2)	27(2)	27(2)	6(2)	-2(1)	5(1)
C(24)	37(2)	23(2)	30(2)	9(2)	0(1)	0(2)
C(25)	34(2)	23(2)	33(2)	14(2)	9(2)	-1(2)
C(26)	24(2)	18(2)	26(2)	-2(2)	1(1)	-2(1)
C(27)	23(2)	27(2)	30(2)	9(2)	5(1)	-3(1)
C(28)	26(2)	40(2)	34(2)	7(2)	6(2)	-1(2)
C(29)	28(2)	36(2)	40(2)	-2(2)	4(2)	1(2)
C(30)	40(2)	42(3)	77(3)	-10(3)	5(2)	-7(2)
C(31)	59(3)	50(3)	45(3)	-3(2)	-5(2)	-4(2)
C(32)	29(2)	50(3)	49(3)	-1(2)	7(2)	7(2)
C(33)	25(2)	61(3)	59(3)	5(3)	2(2)	2(2)

Table 16. Anisotropic displacement parameters ($\approx^2 x \ 10^3$) for **4**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(34)	28(2)	52(3)	52(3)	-2(2)	-1(2)	-6(2)
C(35)	29(2)	37(2)	47(2)	3(2)	9(2)	-6(2)
C(36)	30(2)	55(3)	84(4)	-19(3)	-4(2)	-7(2)
C(37)	60(3)	76(4)	77(4)	-28(3)	0(3)	-19(3)
C(38)	120(5)	44(3)	111(5)	-3(4)	-41(4)	-4(3)
C(39)	58(4)	144(6)	91(5)	-9(5)	-1(3)	-11(4)
C(40)	96(5)	285(13)	68(5)	-43(6)	-27(4)	102(7)
C(41)	121(6)	303(12)	57(4)	-15(6)	27(5)	-110(8)
C(42)	22(2)	51(3)	37(3)	-25(3)	4(2)	-4(2)
C(43)	121(6)	303(12)	57(4)	-15(6)	27(5)	-110(8)
C(44)	22(2)	51(3)	37(3)	-25(3)	4(2)	-4(2)
Fe(1)	17(1)	22(1)	22(1)	3(1)	1(1)	0(1)
N(1)	22(1)	25(2)	29(2)	7(1)	3(1)	-6(1)
N(2)	22(1)	22(2)	26(2)	5(1)	3(1)	3(1)
N(3)	20(1)	22(2)	22(2)	3(1)	1(1)	1(1)
N(4)	19(1)	23(2)	30(2)	4(1)	3(1)	-2(1)
N(5)	21(1)	27(2)	29(2)	4(1)	2(1)	-2(1)
N(6)	25(2)	25(2)	29(2)	7(1)	3(1)	-2(1)
N(7)	20(2)	41(2)	49(2)	16(2)	2(1)	3(1)
P(1)	31(1)	27(1)	27(1)	-2(1)	2(1)	-1(1)
O(1)	131(6)	259(9)	158(7)	-49(6)	20(5)	-56(5)