Electronic Supplementary Information

Enantioselective chlorination and fluorination of β -keto phosphonates catalyzed by chiral Lewis acids

Luca Bernardi and Karl Anker Jørgensen*

The Danish National Research Foundation: Center for Catalysis, Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark, fax: (45) 8919 6199

e-mail: kaj@chem.au.dk

Experimental Section

General Methods. 1 H, 13 C and 19 F NMR spectra were recorded on a Varian AS 400 spectrometer running at 400, 100 and 376 MHz, respectively, in CDCl₃ as the solvent. Chemical shifts were reported in the δ scale relative to residual CHCl₃ (7.26 ppm) for 1 H NMR, to the central line of CDCl₃ (77.0 ppm) for 13 C NMR and to CFCl₃ (0 ppm), for 19 F NMR. 13 C NMR spectra were acquired on a broad band decoupled mode. Mass spectra were recorded on a micromass LCT spectrometer using electrospray (ES⁺) ionisation techniques. Flash column chromatography (FC) was carried out using the Merck silica gel 60 (230-400 mesh). Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak AD or Daicel Chiralcel OJ columns) or by chiral stationary phase GC using a Chrompack CP-Chirasil-Dex CB column. Racemic samples were obtained using Cu(OTf)₂ as a catalyst.

Materials. CH₂Cl₂ was distilled from CaH₂ prior to use. All commercially available reagents were used as received. β–Keto phosphonates $\mathbf{1a,b,d,e}$, $\mathbf{c,}^2 \mathbf{f}^3$ were prepared according to literature procedures. (R,R)-4,6-Dibenzofuranidyl-2,2'-bis(4-phenyloxazoline) (Ph-DBFOX) $\mathbf{4a}$ was prepared following a literature procedure.

General Procedure for the Catalytic Enantioselective Chlorination of β -Keto Phosphonates 1a-f: In a flame dried Schlenk tube equipped with a magnetic stirring bar, ZnI₂ (6.4 mg, 0.02 mmol) and (R,R)-4,6-dibenzofuranidyl-2,2'-bis(4-phenyloxazoline) 4a (10.6 mg, 0.022 mmol) were added, followed by dry CH₂Cl₂ (2 mL). The resulting clear, colourless solution was stirred under N₂ for 1 h, then AgSbF₆ (13.7 mg,

¹ I. Truel, A. Mohamed-Hachi, E. Aboud-Jaudet and N. Collignon, Synth. Commun., 1997, 27, 1165.

² R. D. Clark, L. G. Kozar and C. H. Heathcock, *Synthesis*, 1975, 635.

³ T. Calogeropoulou, G. B. Hammond and D. F. Wiemer, J. Org. Chem., 1987, **52**, 4185.

⁴ U. Iserloh, D. P. Curran and S. Kanemasa, *Tetrahedron: Asymmetry*, 1999, **10**, 2417.

0.04 mmol) was added, and the resulting suspension was stirred in the dark for 6 h. β-Keto phosphonates **1a-f** (0.2 mmol) were then added, followed by *N*-chlorosuccinimide **2a** (29 mg, 0.22 mmol). After 20 h stirring in the dark at room temperature, the products **3a-f** were isolated by FC on silica gel (CH₂Cl₂/Et₂O mixtures).

(1-Chloro-1-methyl-2-oxo-2-phenyl-ethyl)-phosphonic acid diethyl ester (3a): Following the general procedure, compound 3a was obtained as a colourless oil in 98% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min τ_{major} = 6.1 min; τ_{minor} = 7.3 min); ¹H NMR δ 8.23-8.17 (m, 2H), 7.55-7.50 (m, 1H), 7.46-7.39 (m, 2H), 4.38-4.26 (m, 2H), 4.24-4.10 (m, 2H), 2.05 (d, J = 14.4 Hz, 3H), 1.38 (t, J = 6.8 Hz, 3H), 1.29 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 195.0, 135.2, 132.8, 130.3, 127.8, 67.3 (d, J = 150 Hz), 64.8 (d, J = 6.9 Hz), 64.3 (d, J = 6.8 Hz), 26.1 (d, J = 3.1 Hz), 16.5, 16.3; HRMS Γ_{13} H₁₈ClO₄P [M + Na⁺] calculated: 327.0523, found: 327.0522; Γ_{13} = +46 (σ = 0.87, CHCl₃), 92% ee.

(1-Chloro-1-methyl-2-oxo-2-phenyl-ethyl)-phosphonic acid dimethyl ester (3b): Following the general procedure, compound 3b was obtained as a colourless oil in 97% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 97:3, flow rate 1.0 mL/min τ_{major} = 13.7 min; τ_{minor} = 14.9 min); ¹H NMR δ 8.20-8.14 (m, 2H), 7.58-7.50 (m, 1H), 7.48-7.39 (m, 2H), 3.95 (d, J = 10.8 Hz, 3H), 3.84 (d, J = 10.8 Hz, 3H), 2.07 (d, J = 14.8 Hz); ¹³C NMR δ 194.8, 134.8, 133.0, 130.2, 127.9, 67.1 (d, J = 144.0 Hz), 55.4 (d, J = 6.9 Hz), 54.7 (d, J = 6.8 Hz), 25.9 (d, J = 2.2 Hz); HRMS C₁₁H₁₄ClO₄P [M + Na⁺] calculated: 299.0210, found: 299.0205; $[\alpha]^{\text{rt}}_{\text{D}}$ = +20 (c = 1.17, CHCl₃), 78% ee.

(1-Benzoyl-1-chloro-but-3-enyl)-phosphonic acid diethyl ester (3c): Following the general procedure, compound 3c was obtained as a colourless oil in 93% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min τ_{major} = 9.4 min; τ_{minor} = 11.2 min); ¹H NMR δ 8.02-7.98 (m, 2H), 7.52-7.46 (m, 1H), 7.42-7.37 (ddt, J_{d} = 16.8, 10.0 Hz, J_{t} = 6.8 Hz, 2H), 5.74-5.62 (m, 1H), 5.20-5.12 (m, 2H), 4.41-4.28 (m, 2H), 4.26-4.14 (m, 2H), 3.55-3.46 (m, 1H), 2.90-2.79 (m, 1H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR δ 196.5, 137.2, 132.5, 131.1, 129.7, 127.9, 120.9, 72.6 (d, J = 142.6 Hz), 65.3 (d, J = 6.8 Hz), 64.9 (d, J = 7.6 Hz), 42.3 (d, J = 1.5 Hz), 16.7, 16.6; HRMS $C_{15}H_{20}ClO_4P$ [M + Na⁺] calculated: 353.0680, found: 353.0680; $[\alpha]^{\text{rt}}_{\text{D}}$ = +36 (c = 1.17, CHCl₃), 92% ee.

(1-Chloro-1-methyl-2-naphthalen-2-yl-2-oxo-ethyl)-phosphonic acid diethyl ester (3d): Following the general procedure, compound 3d was obtained as a

colourless oil in 97% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min τ_{major} = 7.1 min; τ_{minor} = 16.9 min); ¹H NMR δ 8.90 (br s, 1H), 8.17 (dd, J = 9.2, 1.8 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 8.4 Hz, 1H), 7.61-7.40 (m, 2H), 4.41-4.26 (m, 2H), 4.25-4.12 (m, 2H), 2.11 (d, J = 14.4 Hz, 3H), 1.39 (t, J = 6.8 Hz, 3H), 1.30 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 194.6, 135.2, 132.5, 132.3, 131.9, 129.9, 128.6, 127.6, 127.4, 126.6, 125.8, 67.1 (d, J = 146 Hz), 64.8 (d, J = 6.9 Hz), 64.3 (d, J = 7.6 Hz), 26.2 (d, J = 2.3 Hz), 16.5, 16.3; HRMS $C_{17}H_{20}ClO_4P$ [M + Na⁺] calculated: 377.0680, found: 377.0681; $[\alpha]^{rt}_D$ = +27 (c = 0.88, CHCl₃), 93% ee.

(1-Chloro-1-methyl-2-oxo-propyl)-phosphonic acid diethyl ester (3e): Following the general procedure, compound 3e was obtained as a colourless oil in 80% yield. The ee of the product was determined by GC using a Chrompack CP-Chirasil-Dex CB column (70-110 °C (10 °C/min, 10 min) 110-140 °C (3°C/min) $\tau_{\text{major}} = 18.4 \text{ min}$; $\tau_{\text{minor}} = 18.3 \text{ min}$); ¹H NMR δ 4.33-4.18 (m, 4H), 2.53 (s, 3H), 1.83 (d, J = 14.4 Hz, 3H), 1.36 (t, J = 6.8 Hz, 3H), 1.35 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 200.8, 68.3 (d, J = 144.2 Hz), 64.7 (d, J = 9.1 Hz), 64.5 (d, J = 6.8 Hz), 27.1, 23.2 (d, J = 2.3 Hz), 16.4, 16.3; HRMS $C_8H_{16}ClO_4P$ [M + Na⁺] calculated: 265.0367, found: 265.0365; [α]^{rt}_D = +30 (c = 0.55, CHCl₃), 94% ee.

(1-Chloro-2-oxo-cyclopentyl)-phosphonic acid diethyl ester (3f): Following the general procedure, compound 3f was obtained as a colourless oil in 40% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min $\tau_{\text{major}} = 13.1$ min; $\tau_{\text{minor}} = 11.1$ min); ¹H NMR δ 4.35-4.17 (m, 4H), 2.87-2.74 (m, 1H), 2.55-2.28 (m, 3H), 2.21-2.07 (m, 2H), 1.38 (t, J = 6.8 Hz, 3H), 1.36 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 207.6, 64.5 (d, J = 7.6 Hz), 64.3 (d, J = 6.9 Hz), 63.7 (d, J = 160 Hz), 36.8, 36.5, 19.0, 16.4, 16.3; HRMS C₉H₁₆ClO₄P [M + Na⁺] calculated: 277.0372, found: 277.0367; $[\alpha]_D^{\text{rt}} = -34$ (c = 0.27, CHCl₃), 80% ee.

General Procedure for the Catalytic Enantioselective Fluorination of β-Keto Phosphonates 1a-d,f: In a flame dried Schlenk tube equipped with a magnetic stirring bar and containing activated 4Å molecular sieves, $Zn(ClO_4)_2 \cdot 6H_2O$ (7.4 mg, 0.02 mmol) and (R,R)-4,6-dibenzofuranidyl-2,2'-bis(4-phenyloxazoline) 4a (10.6 mg, 0.022 mmol) were added, followed by dry CH_2Cl_2 (1 mL). The resulting solution was stirred under N_2 for 1 h, then β-keto phosphonates 1a-d,f (0.1 mmol) were added, followed by N-fluorobenzenesulfonimide 2b (95 mg, 0.3 mmol). After 60 h stirring at room temperature, the products 5a-d,f were isolated by FC on silica gel (CH_2Cl_2/Et_2O mixtures).

(1-Fluoro-1-methyl-2-oxo-2-phenyl-ethyl)-phosphonic acid diethyl ester (5a):
Following the general procedure, compound 5a was obtained as a colourless oil in 59% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 95:5, flow rate 1.0 mL/min τ_{major} = 11.3 min; τ_{minor} = 12.5 min); ¹H NMR δ 8.10-8.04 (m, 2H), 7.60-7.54 (m, 1H), 7.49-7.41 (m, 2H), 4.34-4.18 (m, 4H), 1.92 (dd, J = 24.0, 15.2 Hz, 3H), 1.35 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR δ 197.6 (d, J = 26.6 Hz), 134.7, 133.4, 130.0 (d, J = 7.6 Hz), 128.2, 100.5 (dd, J = 194.2, 160.8 Hz), 64.2 (d, J = 3.8 Hz), 64.1 (d, J = 3.8 Hz), 21.5 (d, J = 21.2 Hz), 16.4. 16.3; ¹⁹F NMR δ -166.2 (dq, J_d = 84.2 Hz, J_q = 23.7 Hz); HRMS C_{13} H₁₈FO₄P [M + Na⁺] calculated: 311.0819, found: 311.0834; $[\alpha]_D^{\text{rt}} = +23$ (c = 0.70, CHCl₃), 89% ee.

(1-Fluoro-1-methyl-2-oxo-2-phenyl-ethyl)-phosphonic acid dimethyl ester (5b): Following the general procedure, compound 5b was obtained as a colourless oil in 46% yield. The ee of the product was determined by HPLC using a Daicel Chiralcel OJ column (n-hexane/i-PrOH = 90:10, flow rate 1.0 mL/min τ_{major} = 42.7 min; τ_{minor} = 34.9 min); ¹H NMR δ 8.09-8.04 (m, 2H), 7.62-7.55 (m, 1H), 7.49-7.43 (m, 2H), 3.90 (d, J = 4.8 Hz, 3H), 3.87 (d, J = 4.8 Hz, 3H), 1.93 (dd, J = 24.0, 15.2 Hz, 3H); ¹³C NMR δ 197.4 (d, J = 22.7 Hz), 134.4 , 133.6, 129.9, 128.3, 100.5 (dd, J = 194.3, 162.4 Hz), 54.6, 54.5, 21.6 (d, J = 22.0 Hz); ¹⁹F NMR δ -166.5 (dq, J_d = 85.7 Hz, J_q = 25.2 Hz); HRMS Γ_{11} H₁₄FO₄P [M⁺] calculated: 283.0506, found: 283.0510; [α]^{rt}_D = +19 (c = 0.45, CHCl₃), 70% ee.

(1-Benzoyl-1-fluoro-but-3-enyl)-phosphonic acid diethyl ester (5c): Following the general procedure, compound 5c was obtained as a colourless oil in 41% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 98:2, flow rate 1.0 mL/min τ_{major} = 19.8 min; τ_{minor} = 21.4 min); ¹H NMR δ 8.02-7.94 (m, 2H), 7.59-7.52 (m, 1H), 7.47-7.39 (m, 2H), 5.80-5.66 (m, 1H), 5.24-5.10 (m, 2H), 4.33-4.18 (m, 4H), 3.32-3.11 (m, 1H), 3.04-2.86 (m, 1H), 1.35 (t, J = 6.8 Hz, 3H), 1.33 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 197.8 (d, J = 26.5 Hz), 133.1, 129.7, 129.6 (dd, J = 11.4, 3.8 Hz), 128.1, 120.8, 102.4 (dd, J = 157.9, 199.6 Hz), 64.3 (dd, J = 6.8, 9.1 Hz), 39.2 (d, J = 20.5 Hz), 16.4 (d, J = 5.3, 2.2 Hz); ¹⁹F NMR δ -175.9 (ddd, J = 82.7, 36.8, 11.6 Hz); HRMS $C_{15}H_{20}FO_4P$ [M + Na⁺] calculated: 337.0975, found: 337.0970; [α]^{rt}_D = +22 (c = 0.35, CHCl₃), 91% ee.

(1-Fluoro-1-methyl-2-naphthalen-2-yl-2-oxo-ethyl)-phosphonic acid diethyl ester (5d): Following the general procedure, compound 5d was obtained as a colourless oil in 71% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 95:5, flow rate 1.0 mL/min τ_{major} = 17.5 min; τ_{minor} = 28.4 min); ¹H NMR δ 8.73 (br s, 1H), 8.10-8.03 (m, 1H), 8.01-7.95 (m, 1H), 7.91-7.82 (m, 2H), 7.64-7.50 (m, 2H),

4.36-4.18 (m, 4H), 1.98 (dd, J = 24.0, 15.2 Hz, 3H), 1.36 (t, J = 6.8 Hz, 3H), 1.35 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 198.4 (d, J = 24 Hz), 135.5, 132.6, 132.5, 132.2 (d, J = 1.4 Hz), 103.0, 128.8, 127.9 (d, J = 1.5 Hz), 127.6, 126.6, 125,3 (d, J = 4.6 Hz), 99.2 (dd, J = 190.0, 160.9 Hz), 64.2 (dd, J = 6.8, 5.4 Hz), 21.7 (d, J = 22.0 Hz), 16.4 (dd, J = 5.3, 1.0 Hz); ¹⁹F NMR δ –165.5 (dq, J = 84.3, 23.7 Hz); HRMS C₁₇H₂₀FO₄P [M + Na⁺] calculated: 361.0975, found: 361.0979; [α]^T_D = -14 (c = 0.75, CHCl₃), 89% ee.

(1-Fluoro-2-oxo-cyclopentyl)-phosphonic acid diethyl ester (5f): Following the general procedure, compound 5f as obtained as a colourless oil in 38% yield. The ee of the product was determined by HPLC using a Daicel Chiralpak AD column (n-hexane/i-PrOH = 95:5, flow rate 1.0 mL/min $\tau_{\text{major}} = 11.8$ min; $\tau_{\text{minor}} = 10.8$ min); ¹H NMR δ 4.18-4.07 (m, 4H), 2.82-2.65 (m, 1H), 2.58-1.98 (m, 5H), 1.38 (t, J = 6.8 Hz, 3H), 1.35 (t, J = 6.8 Hz, 3H); ¹³C NMR δ 209.0 (d, J = 9.9 Hz), 96.2 (dd, J = 199.6, 160.1 Hz), 64.2 (d, J = 7.6 Hz), 64.0 (d, J = 6.8 Hz), 35.4 (d, J = 2.3 Hz), 32.1, 31.9, 16.9, 16.3; ¹⁹F NMR δ -174.5 (ddd, J = 84.2, 25.2, 10.5 Hz); HRMS C₉H₁₆FO₄P [M + Na⁺] calculated: 261.0662, found: 261.0658; [α]^{rt}_D = -125 (c = 0.3, CHCl₃), 91% ee.