Preparation of cyclic Alkenylmagnesium Reagents via Iodine/Magnesium Exchange

Hongjun Ren, Arkady Krasovskiy, Paul Knochel *

Department Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, München (Germany). Paul.Knochel@.cup.uni-muenchen.de

Supporting Information

General considerations

Unless otherwise indicated, all reactions were carried out with magnetic stirring and, if air or moisture sensitive, in flame-dried glassware under argon. Syringes used to transfer reagents and solvent were purged with argon prior to use. Reactions were monitored by gas chromatography (GC and GC-MS) or thin layer chromatography (TLC).

5-Ethoxymethoxy-1-iodo-cyclopentene (1a).

To a solution of 2-iodo-cyclopent-2-enol ($390 \mathrm{mg}, 1.86 \mathrm{mmol}$) and $(i-\operatorname{Pr})_{2} \mathrm{NEt}(311 \mathrm{mg}, 2.41$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was slowly added chloromethoxy-ethane ($228 \mathrm{mg}, 2.41 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and then warmed to rt for 2 h. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and the organic phase was washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography yielded the pure product 1a ($430 \mathrm{mg}, 86 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 6.30-6.35(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.58-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.81$ $(\mathrm{m}, 2 \mathrm{H}), 2.40-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 143.6,96.4,94.2,86.6,63.4,32.8,29.9,15.0 ;$
IR (film): 2931, 1606, 1391, 1098, 1036, 1012;
MS (IE, 70 ev): 268 ($\mathrm{M}^{+}, 0.3$ \%), 238 (9 \%), 222 (35 \%), 192 (100 \%), 111 (47 \%).

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004

6-Ethoxymethoxy-1-iodo-cyclohexene (1b).

To a solution of 2-iodo-cyclohex-2-enol ($1.63 \mathrm{~g}, 7.3 \mathrm{mmol}$) and $(i-\operatorname{Pr})_{2} \mathrm{NEt}(1.41 \mathrm{~g}, 11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was slowly added chloromethoxy-ethane ($897 \mathrm{mg}, 9.5 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h at this temperature and then warmed to rt for 2 h . $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added and the organic phase was washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography yielded the pure product $\mathbf{1 b}(1.91 \mathrm{~g}, 93 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 6.52(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.68(\mathrm{~m}, 1 \mathrm{H}), 1.55-2.17(\mathrm{~m}, 6$ H), $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 142.0,99.0,94.2,77.1,63.7,30.0,29.3,17.0,14.9 ;$
IR (film): 2936, 1629, 1440, 1391, $1028 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev): $282\left(\mathrm{M}^{+}, 0.5 \%\right.$), 252 (4 \%), 236 (33 \%), 206 (99 \%), 125 (100 \%), 79 (98 \%).

Typical Procedure for the compounds of 3a, 3b, 3d:
To a solution of 5-ethoxymethoxy-1-iodo-cyclopentene (1a) ($268 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (0.3 $\mathrm{mL})$ was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.51 \mathrm{~mL}, 1.1 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-25^{\circ} \mathrm{C}$. After 5 h , a complete conversion to the Grignard reagent (2a) was observed as indicated by GCanalysis of hydrolyzed reaction aliquots. Electrophiles (allylbromide, $\mathrm{PhSSPh}, \mathrm{PhCHO}, 1.1$ $\mathrm{mmol})$ in $\mathrm{THF}(1.0 \mathrm{~mL})$ was added and the reaction mixture was warmed up to $25^{\circ} \mathrm{C}$ and quenched as usual. The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic fractions were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography yielded the pure product.

Typical Procedure for the compounds of $\mathbf{3 g}, \mathbf{3 h}, \mathbf{3 i}$:
To a solution of 6-ethoxymethoxy-1-iodo-cyclohexene (1b) ($282 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (0.3 $\mathrm{mL})$ was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.51 \mathrm{~mL}, 1.1 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-40^{\circ} \mathrm{C}$. After 12 h , a complete conversion to the Grignard reagent (2b) was observed as indicated by GCanalysis of hydrolyzed reaction aliquots. Electrophiles (allylbromide, $\mathrm{PhSSPh}, \mathrm{PhCHO}, 1.1$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004
$\mathrm{mmol})$ in $\operatorname{THF}(1.0 \mathrm{~mL})$ was added and the reaction mixture was warmed up to $25^{\circ} \mathrm{C}$ and quenched as usual. The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The organic fractions were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography yielded the pure product.

1-Allyl-5-ethoxymethoxy-cyclopentene (3a).

Yield: 91 \%; colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 5.79-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.60(\mathrm{~m}, 1 \mathrm{H}), 4.99-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.74$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.54-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.75-$ 2.96 (m, 2 H), 2.34-2.47 (m, 1 H), 2.11-2.28 (m, 2 H), 1.75-1.85 (m, 1 H), 1.20 (t, $J=7.1 \mathrm{~Hz}$, 3 H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 142.8,135.9,128.9,115.7,94.2,83.6,63.2,32.9,30.9,30.0$, 15.1;

IR (film): 2976, 1738, 1640, 1391, 1364, 1099, $1039 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev): $181\left(\mathrm{M}^{+}-\mathrm{H}, 0.2 \%\right.$), 141 (21%), 106 (95%), 91 (53%), 79 (62%);
HRMS (EI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}\right): 181.1229$, found: $181.1243\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

(5-Ethoxymethoxy-cyclopent-1-enylsulfanyl)-benzene (3b).
Yield: 82 \%; colorless oil.
${ }^{1} \mathrm{H}$ NMR (CDCl3, 300 MHz): 7.32-7.40 (m, 2 H), $7.14-7.26(\mathrm{~m}, 3 \mathrm{H}), 5.69-5.75(\mathrm{~m}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.57(\mathrm{~m}, 2 \mathrm{H})$, 2.36-2.51 (m, 1 H), 2.13-2.31 (m, 2 H), 1.83-1.95 (m, 1 H), $1.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 137.8,134.1,133.7,131.7,129.0,127.2,94.1,82.0,63.1,31.2$, 30.6, 14.9;

IR (film): 2974, 1738, 1584, 1477, 1440, 1098, $1042 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 250 ($\mathrm{M}^{+}, 13$ \%), 174 (100 \%), 147 (15 \%), 110 (14 \%);
HRMS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}: 250.1028$, found: 250.1031.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

3-(5-Ethoxymethoxy-cyclopent-1-enyl)-cyclohex-2-enone (3c).

To a solution of 5-ethoxymethoxy-1-iodo-cyclopentene (1a) ($268 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (0.3 $\mathrm{mL})$ was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.51 \mathrm{~mL}, 1.1 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-25^{\circ} \mathrm{C}$. After 5 h , a complete conversion to the Grignard reagent (2a) was observed as indicated by GCanalysis of hydrolyzed reaction aliquots. THF (2.0 mL) and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$, 1.0 M in THF) were added at this temperature and stirred for 15 min . The solution of 3-iodo-cyclohex-2-enone ($244 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF (1.0 mL) was added and the reaction mixture was stirred continuously 4 h at $-25^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to $25^{\circ} \mathrm{C}$ and quenched with aq. $\mathrm{NH}_{3}(2 \mathrm{ml})$. The aqueous phase was extracted with diethyl ether ($3 \times$ $10 \mathrm{~mL})$. The organic fractions were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography yielded the pure product 3c (144 $\mathrm{mg}, 61 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 6.47(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 4.90\left(\mathrm{dt}, J_{1}=6.6 \mathrm{~Hz}, J_{2}\right.$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.32-$ $2.70(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (CDCl3, 75 MHz): 200.3, 152.9, 143.1, 140.1, 124.9, 94.4, 81.0, 64.0, 37.4, 31.3, 30.7, 26.6, 22.4, 14.9;

IR (film): 2972, 1659, 1613, 1584, 1448, 1101, $1030 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 236 ($\mathrm{M}^{+}, 0.1$ \%), 206 (2 \%), 192 (2 \%), 160 (100 \%), 147 (11 \%), 133 (19 \%), 91 (51 \%);

HRMS (EI): calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$: 236.1413, found: 236.1435 .

(5-Ethoxymethoxy-cyclopent-1-enyl)-phenyl-methanol (3d).

Yield: 89%, colorless oil, $\mathrm{dr}=80: 20$ (determined by GC).

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.08-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.03-2.16$ $(\mathrm{m}, 2 \mathrm{H}), 1.67-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The following signals is discernible for the minor isomer: $5.58(\mathrm{~s}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.51-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{q}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR (CDCl3, 75 MHz): 145.1, 142.7, 132.8, 128.0, 126.9, 125.8, 94.2, 82.7, 71.9, 63.6, 31.2, 29.9, 14.8.

IR (film): 3437, 2932, 1603, 1493, 1452, 1106, $1029 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 247 ($\mathrm{M}^{+}-\mathrm{H}, 0.1 \%$), 230 (0.2%), 172 (100 \%), 143 (10 \%), 105 (79 $\%$).

(5-Ethoxymethoxy-cyclopent-1-enyl)-phenyl-methanone (3e).
To a solution of 5-ethoxymethoxy-1-iodo-cyclopentene (1a) ($268 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (0.3 $\mathrm{mL})$ was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.51 \mathrm{~mL}, 1.1 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-25^{\circ} \mathrm{C}$. After 5 h , a complete conversion to the Grignard reagent (2a) was observed as indicated by GCanalysis of hydrolyzed reaction aliquots. THF (2.0 mL) and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$, 1.0 M in THF) were added at this temperature and stirred for 15 min . Benzoyl chloride (211 $\mathrm{mg}, 1.5 \mathrm{mmol}$) was added and the reaction mixture was stirred continuously 1 h at $-25^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to $25^{\circ} \mathrm{C}$ and stirred for 2 h and quenched with aq. $\mathrm{NH}_{3}(2 \mathrm{ml})$. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography yielded the pure product 3e(144 mg, 61%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.75-7.80 (m, 2 H), 7.47-7.54 (m, 1 H), 7.37-7.44 (m, 2 H), 6.61 $(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.26(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (CDCl3, 75 MHz): 193.0, 148.0, 144.6, 138.6, 132.1, 129.0, 128.2, 94.7, 81.0, 63.2, 31.9, 30.7, 15.0;

IR (film): 2974, 1738, 1651, 1447, 1107, $1037 \mathrm{~cm}^{-1}$;

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
MS (EI, 70 ev), m/z (\%): $201\left(\mathrm{M}^{+}-\mathrm{OC}_{2} \mathrm{H}_{5}, 1 \%\right.$), 187 (8 \%), 172 (100 \%), 157 (7 \%), 144 (9 \%), 105 (89%);

HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{OC}_{2} \mathrm{H}_{5}\right)$: 201.0916, found: $201.0907\left(\mathrm{M}^{+}-\mathrm{OC}_{2} \mathrm{H}_{5}\right)$.

\mathbf{N}-[2-(5-Ethoxymethoxy-cyclopent-1-enyl)-ethyl]-4-methyl-benzenesulfonamide (3f).
To a solution of 5-ethoxymethoxy-1-iodo-cyclopentene (1a) ($268 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (0.3 $\mathrm{mL})$ was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.51 \mathrm{~mL}, 1.1 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-25^{\circ} \mathrm{C}$. After 5 h , a complete conversion to the Grignard reagent (2a) was observed as indicated by GCanalysis of hydrolyzed reaction aliquots. THF (2.0 mL) and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}$, 1.0 M in THF) were added at this temperature and stirred for 15 min . The solution of 1 -(toluene-4-sulfonyl)-aziridine ($217 \mathrm{mg}, 1.1 \mathrm{mmol}$) in THF (1.0 mL) was added and the reaction mixture was stirred continuously 1 h at $-25^{\circ} \mathrm{C}$. Then the reaction mixture was warmed up to $25^{\circ} \mathrm{C}$ and stirred for 12 h and then quenched with aq. $\mathrm{NH}_{3}(2 \mathrm{ml})$. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane:ether $=1: 2)$ yielded the pure product $3 f(214 \mathrm{mg}, 63 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 7.70, (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.50-5.54$ (m, 1 H), $5.00-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.48$ (m, 1 H), 3.48-3.58 (m, 2 H), 2.93-3.17 (m, 2 H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.39(\mathrm{~m}, 5 \mathrm{H}), 1.65-1.81$ (m, 1 H), $1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 143.1,140.3,137.0,131.9,129.5,127.1,94.1,83.8,63.5,41.9$, 30.7, 30.1, 28.4, 21.4, 15.0;

IR (film): 3279, 2930, 1598, 1495, 1435, 1328, $1160 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): $280\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}, 8 \%\right.$), 263 (9%), 184 (60%), 155 (100%), 138 (12 \%), 108 (12 \%).

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

1-Allyl-6-ethoxymethoxy-cyclohexene (3g).

Yield: 81 \%; colorless oil.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): 5.70-5.86 (m,1 H), 5.56-5.65 (m, 1 H), 4.96-5.05 (m, 1 H$), 4.98$ ($\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.77(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 3.54-$ 3.73 (m, 2 H), 2.77-2.82 (m, 2 H), 1.82-2.09 (m, 3 H), 1.47-1.73 (m, 3 H), $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3 H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 136.7,136.1,127.0,115.8,94.0,72.0,63.3,38.6,28.5,25.3$, 17.8, 15.0;

IR (film): 2975, 1738, 1639, 1440, 1391, 1099, $1033 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 195 ($\mathrm{M}^{+}-\mathrm{H}, 0.1 \%$), 166 (1 \%), 155 (10 \%), 120 (100 \%), 105 (21 \%), 79 (80%);
HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}\right)$: 195.1385 , found: $195.1390\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

(6-Ethoxymethoxy-cyclohex-1-enylsulfanyl)-benzene (3h).
Yield: 81 \%; colorless oil.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.08-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.07(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.58 (d, J = 7.1 Hz, 1 H), 3.98 (s, 1 H), 3.46-3.68 (m, 2 H), 1.50-2.19 (m, 6 H), 1.07 ($\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 136.9,135.3,132.8,130.3,128.9,126.4,94.2,71.4,63.2,29.3$, 27.0, 16.9, 14.9;

IR (film): 2933, 1582, 1478, 1440, 1106, $1032 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 264 ($\mathrm{M}^{+}, 11 \%$), 188 (100 \%), 173 (8 \%), 147 (12 \%), 110 (14 \%);
HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: 264.1184$, found: 264.1190.

(6-Ethoxymethoxy-cyclohex-1-enyl)-phenyl-methanol (3i).

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
Yield: 81%, colorless oil, $\mathrm{dr}=80: 20$ (determined by GC). The two isomers can be separated by repeated flash chromatography on silica gel.
Less polar isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: $7.18-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.87(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.09(\mathrm{~m}, 1$ H), $3.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.58(\mathrm{~m}, 2 \mathrm{H}), 1.49-2.24(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H);
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 143.0,138.8,131.3,128.0,126.7,125.8,94.2,77.8,72.0,63.8$, 28.6, 25.2, 18.2, 14.9;

IR (film): 3450, 2932, 1602, 1492, 1450, 1104, $1031 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 262 ($\mathrm{M}^{+}, 0.1 \%$), 203 (3 \%), 186 (100 \%), 168 (11 \%), 157 (22 \%), 129 (21 \%), 105 (48 \%).

1-Iodo-3-methylene-cyclohexene (4).

To a solution of methyltriphenylphosphonium bromide ($1.18 \mathrm{~g}, 3.3 \mathrm{mmol}$) in THF (15 mL) was slowly added $n-\operatorname{BuLi}\left(2.2 \mathrm{~mL}, 3.3 \mathrm{mmol}, 1.50 \mathrm{M}\right.$ in Hexane) at $-78^{\circ} \mathrm{C}$, then warmed to 0 ${ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and slowly transfered to a solution of 3-iodo-cyclohex-2-enone ($666 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF (20 mL) and stirred overnight at room temperature. Quenched with $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ and the aqueous phase was extracted with diethyl ether ($3 \times 200 \mathrm{~mL}$). The organic fractions were washed with brine (20 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane) yielded the pure product ($554 \mathrm{mg}, 84 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$): $6.79(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2$ H), 2.29-2.35 (m, 2 H), 1.70-1.79 (m, 2 H);
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 143.2,139.9,111.6,100.8,39.6,29.0,24.9$;
IR (film): 2937, 1676, 1624, 1589, 1426, 1335, $892 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 220 ($\mathrm{M}^{+}, 100$ \%), 192 (0.2 \%), 127 (1 \%), 91 (15 \%), 77 (16 \%);
HRMS (EI): calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{I}: ~ 219.9747$, found: 219.9771.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
1-Iodo-6-methylene-cyclohexene (5).
The reaction was carried out according to the procedure for 1-iodo-3-methylene-cyclohexene
(4). Methyltriphenylphosphonium bromide ($1.18 \mathrm{~g}, 3.3 \mathrm{mmol}$) and 3-iodo-cyclohex-2-enone ($666 \mathrm{mg}, 3.0 \mathrm{mmol}$) yielded the product 1 -iodo-6-methylene-cyclohexene (5) ($67 \mathrm{mg}, 10 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$: 6.65-6.69 (m, 1 H$), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 2.51-2.61(\mathrm{~m}, 2$ H), 2.18-2.30 (m, 2 H), 1.75-1.84 (m, 2 H);

MS (EI, 70 ev), m/z (\%): 220 ($\mathrm{M}^{+}, 100$ \%), 205 (1 \%), 127 (5 \%), 91 (64 \%), 77 (63 \%).

1-(3-Methylene-cyclohex-1-enyl)-propan-1-ol (7).

To a solution of 1-iodo-3-methylene-cyclohexene (4) ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (0.2 mL) was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.26 \mathrm{~mL}, 0.55 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-40^{\circ} \mathrm{C}$. After 4 h , a complete conversion to the Grignard reagent (6) was observed as indicated by GC-analysis of hydrolyzed reaction aliquots. The solution of propionaldehyde ($32 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF $(0.5 \mathrm{~mL})$ was added and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and quenched as usual. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane:ether $=1: 3)$ yielded the pure product $7(69 \mathrm{mg}, 91 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 6.09(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1$ H), 2.25-2.35 (m, 2 H), 2.06-2.19 (m, 1 H), 1.92-2.03 (m, 1 H), 1.50-1.76 (m, 4 H), $0.87(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 3 \mathrm{H}$);
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 143.6, 143.2, 125.2, 110.6, 77.3, 30.8, 27.8, 24.1, 23.0, 9.9;
IR (film): 3391, 2960, 1662, 1607, $1455 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 152 ($\mathrm{M}^{+}, 11 \%$), 134 (4%), 123 (100%), 95 (55%), 77 (20 \%);
HRMS (EI): calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}: 152.1201$, found: 152.1203.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

4-Methyl-N-[(3-methylene-cyclohex-1-enyl)-phenyl-methyl]-benzenesulfonamide (8).

To a solution of 1-iodo-3-methylene-cyclohexene (4) ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (0.2 mL) was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.26 \mathrm{~mL}, 0.55 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-40^{\circ} \mathrm{C}$. After 4 h , a complete conversion to the Grignard reagent (6) was observed as indicated by GC-analysis of hydrolyzed reaction aliquots. The solution of N-benzylidene-4-methylbenzenesulfonamide ($142 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF (0.5 mL) was added and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and quenched as usual. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane:ether $=$ $1: 2)$ yielded the pure product $8(150 \mathrm{mg}, 85 \%)$ as a white solid, mp : $127.1-127.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.22(\mathrm{~m}, 7 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.02$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.40-$ 2.30 (m, 6 H);
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 143.2,142.5,138.9,138.8,137.5,129.3,128.5,127.7,127.6$, $127.3,126.9,111.7,62.8,30.2,25.6,22.5,21.4 ;$

IR (KBr): 3436, 3290, 1643, 1599, 1494, 1455, 1435, 1320, $1160 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 353 ($\mathrm{M}^{+}, 2 \%$), 260 (3 \%), 198 (100 \%), 182 (19 \%), 167 (22 \%), 91 (43 \%);
HRMS (EI): calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}: 353.1449$, found: 353.1463.

4-(3-Methylene-cyclohex-1-enyl)-benzoic acid methyl ester (9).

To a solution of 1-iodo-3-methylene-cyclohexene (4) ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (0.2 mL) was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.26 \mathrm{~mL}, 0.55 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-40^{\circ} \mathrm{C}$. After 4 h , a complete conversion to the Grignard reagent (6) was observed as indicated by GC-analysis of hydrolyzed reaction aliquots. The solution of $\mathrm{ZnBr}_{2}(0.55 \mathrm{~mL}, 0.55 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added at $-40{ }^{\circ} \mathrm{C}$ and warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 20 min . The solution of methyl 4 -

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
iodobenzoate ($144 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF (0.5 mL), $\mathrm{Pd}(\mathrm{dba}) 2(14.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and tri($2-$ furyl)phosphine ($12 \mathrm{mg}, 10 \mathrm{~mol} \%$) were added and the reaction mixture was stirred overnight at room temperature then quenched as usual. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane:ether $=1: 2$) yielded the pure product $9(107 \mathrm{mg}, 94 \%)$ as a white solid, mp : 59.3-60.7 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1$ H), $4.97(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 2 \mathrm{H})$, 1.81-1.89 (m, 2 H);
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 166.9,145.8,143.5,138.1,129.6,128.6,128.4,125.0,113.0$, 52.0, 30.1, 27.3, 23.0;

IR (KBr): 2948, 1718, 1601, 1434, 1289, $1111 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 228 ($\mathrm{M}^{+}, 100 \%$), 213 (7 \%), 197 (19 \%), 169 (22 \%), 154 (18 \%), 141 (23 \%);
HRMS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}: 228.1150$, found: 228.1132.

3-(3-Methylene-cyclohex-1-enyl)-but-2-enal (10).

To a solution of 1-iodo-3-methylene-cyclohexene (4) ($110 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (0.2 mL) was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.26 \mathrm{~mL}, 0.55 \mathrm{mmol}, 2.16 \mathrm{M}\right.$ in THF) at $-40^{\circ} \mathrm{C}$. After 4 h , a complete conversion to the Grignard reagent (6) was observed as indicated by GC-analysis of hydrolyzed reaction aliquots. The solution of $\mathrm{ZnBr}_{2}(0.55 \mathrm{~mL}, 0.55 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added at $-40{ }^{\circ} \mathrm{C}$ and warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 20 min . The solution 3-bromo-cyclohex-2-enone ($88 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (0.5 mL), $\mathrm{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and tri(2-furyl)phosphine ($12 \mathrm{mg}, 10 \mathrm{~mol} \%$) were added and the reaction mixture was stirred overnight at room temperature then quenched as usual. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine (10 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane:ether $=$ 2:1) yielded the pure product $10(66 \mathrm{mg}, 70 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 5.00-5.04(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=6.0$ Hz, 2 H), 2.23-2.41 (m, 6 H), 1.97-2.06 (m, 2 H), 1.71-1.79 (m, 2 H);

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 200.4, 158.5, 143.4, 137.8, 131.9, 123.9, 115.8, 37.5, 29.9, 25.7, 25.3, 22.54, 22.51;

IR (film): 2927, 1706, 1662, $1187 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 188 ($\mathrm{M}^{+}, 100$ \%), 173 (11 \%), 160 (32 \%), 145 (31 \%), 117 (53 \%);
HRMS (EI): calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}: 188.1201$, found: 188.1189.

4-(6-Methylene-cyclohex-1-enyl)-benzoic acid methyl ester (12).

To a solution of 1-iodo-3-methylene-cyclohexene (5) ($60 \mathrm{mg}, 0.27 \mathrm{mmol}$) in THF (0.1 mL) was slowly added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}\left(0.15 \mathrm{~mL}, 0.30 \mathrm{mmol}, 2.0 \mathrm{M}\right.$ in THF) at $-40^{\circ} \mathrm{C}$. After 4 h , a complete conversion to the Grignard reagent (11) was observed as indicated by GC-analysis of hydrolyzed reaction aliquots. The solution of $\mathrm{ZnBr}_{2}(0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added at $-40{ }^{\circ} \mathrm{C}$ and warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 20 min . The solution of methyl 4 iodobenzoate ($78 \mathrm{mg}, 0.3 \mathrm{mmol}$) in THF (0.3 mL), $\mathrm{Pd}(\mathrm{dba})_{2}(8 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and tri (2-furyl) phosphine ($6 \mathrm{mg}, 10 \mathrm{~mol} \%$) were added and the reaction mixture was stirred overnight at room temperature then quenched as usual. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic fractions were washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (pentane:ether $=1: 5$) yielded the pure product 12 ($55 \mathrm{mg}, 90 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.78-5.82$ $(\mathrm{m}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 2$ H), 1.75-1.84 (m, 2 H);
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 167.1,146.6,143.3,139.8,131.0,129.2,129.0,128.5,111.9$, 52.0, 32.6, 26.6, 23.1;

IR (film): 2936, 1724, 1608, 1435, 1277, $1112 \mathrm{~cm}^{-1}$;
MS (EI, 70 ev), m/z (\%): 228 ($\mathrm{M}^{+}, 82 \%$), 213 (11 \%), 197 (12 \%), 169 (100 \%), 153 (13 \%), 141 (63 \%);
HRMS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}: 228.1150$, found: 228.1133 .

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2004

1a

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

1b

1b

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

3a

3a

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

3b

3b

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

3c

3c

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

3d

3d

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

$3 e$

$3 e$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

3g

3g

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

$3 i$

$3 i$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

7

7

man

$\underset{170}{717}$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

8

NHTs

8

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

10

10

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2004

12

12

Whaw max

