Supporting Information

Synthesis and Characterisation of 1

A CHCl₃ solution of I₂ (2.050 g; 250 mL) is slowly added to a CHCl₃ solution of Me₂dazdt prepared according to ref. 5 (0.750 g; 100 mL). The solution darkens and shiny red-brown micro-crystals of **1** precipitate immediately. Well-shaped crystals of **1**, suitable for X-ray studies, are obtained from the filtrate in an almost quantitative yield by slow evaporation of the solvent, and washing with petroleum ether (40-60°). Characterisation: *Anal*. Found: C% 12.33; H% 1.76; N% 4.05; S% 9.11; Calcd. for C₇H₁₂N₂S₂I₄ (695.919): C% 12.08; H% 1.74; N% 4.03; S% 9.22; *IR* (*cm*⁻¹): 2930vw, 2860vw, 1530vs, 1450w, 1426vw, 1396m, 1384mw, 1351w, 1334mw, 1287mw, 1272m, 1259m, 1190vw, 1113m, 1082vw, 1019w, 967m, 824s, 739w, 682vw, 600s, 537w, 515vw, 441vw, 405w, 307w, 261w, 150vs, 114s, 95m; *Raman* (*cm*⁻¹): 2986vw, 2954w, 2925mw, 1531w, 1451w, 1398w, 1286vw, 1259vw, 968vw, 876vw, 683m, 600w, 539w, 438m, 407w, 263s, 146vs; *UV-Vis* (*in CH₃CN*) [I =nm (e=dm³ mol⁻¹ cm⁻¹)]: 238 (9500), 277 (13000), 300 (13000), 360 (3500), 438sh.

Synthesis and Characterisation of 2

2 has been prepared by stirring a THF solution of **1** (210 mg; 150 mL) with Pd-powder (12.3 mg, ACROS 99.99%) at room temperature. The colour of the solution turns from red-orange to brown with the formation of **2**. After approximately 1 h the palladium powder disappears. Well-shaped crystals of **2**, suitable for X-ray characterisation, are obtained from THF/Et₂O. Characterisation: *Anal.* Found: C% 13.81, H% 1.92, N% 4.50, S% 10.19; Calcd. for PdC₁₄H₂₄N₄S₄I₆ (1244.458): C% 13.51; H% 1.94, N% 4.50, S% 10.31; *IR* (*cm*⁻¹): 2920vw, 2860vw, 1518vs, 1451m, 1433mw, 1400ms, 1385s, 1352w, 1329mw, 1287ms, 1264s, 1159w, 1117s, 1105sh, 1078m, 1044mw, 1026w, 964m, 900w, 831w, 752mw, 688w, 616m, 557w, 533mw, broad band centered at 390m, 321w, 127ms; *Raman* (*cm*⁻¹): 2991m, 2944m, 2936m, 2921ms, 2905m, 2856mw, 1535s, 1459mw, 1447mw, 1400m, 1357s, 1330w, 1269ms, 1218mw, 1182w, 1125mw, 1073w, 902mw, 832vw,

691w, 621mw, 535mw, 355m, 114vs; *UV-Vis (in CH₃CN)* [1 =*nm* (e=*dm*³ *mot*⁻¹*)*]: 292 (112000), 357 (57500), 475sh.

Materials and Methods

Characterisation of Reagents and Products

Microanalyses: Carlo Erba CHNS elemental analyser EA1108.

MIR spectra: on KBr pellets, Perkin Elemer mod. 983 spectrometer.

FIR spectra: on polyethylene pellets, Bruker EQUINOX 55 FT-spectrometer.

FT-Raman spectra: on solid sample in a capillary tube, resolution $\pm 4 \text{ cm}^{-1}$, power 50 mW, Bruker RFS100 FT-spectrometer operating with an excitation frequency of 1064 nm, Nd:YAG laser, and an InGaAs detector.

Electronic spectra: Varian Cary 5 Spectrophotometer.

Characterisation of catalysts

Powder XRD spectra of the fresh and aged catalysts were collected on a Siemens Kristalloflex Mod. F instrument (Ni-filtered CuK α). BET surface areas were obtained from N₂ adsorption isotherms at 77 K on a Micrometrics ASAP 2000 analyser.

Analytical procedure for Pd determination

The Pd content has been determined by ICP-AES Varian Lyberty 200 Spectrometer, following an acid disgregation (HNO_3/H_2SO_4 , 3:1 volume ratio) of the residue obtained by filtration of the solution of **2** from the catalyst and after solvent evaporation. A calibration plot has been obtained by using five standards in the 1-10 ppm range. The sample solution has been prepared diluting the disgregated solution in water containing few drops of HCl conc., to achieve a ~6 ppm concentration.

All reagents and solvents were used as furnished by Aldrich.

X-ray Characterization

Data Collection and Structure Determination¹. Diffraction data were collected at room temperature on a Philips PW 1100 and on a Siemens AED diffractometers for **1** and **2** respectively. The space groups were chosen on the basis of the systematic extinctions and intensity statistics. The intensities recorded by the q-2q scan technique, were corrected for Lorentz and polarization effects. The empirical methods of Walker and Stuart¹ was used for the absorption correction for both compounds. The structure was solved by direct methods through Sir92² program and refined by full-matrix least-squares using SHELXL-97³ program with anisotropic thermal parameters for the non-hydrogen atoms. The hydrogen atoms were placed at their geometrically calculated positions and refined by use of a "riding" model correction on the corresponding carbon atoms. The refinement of **2** gave high thermal parameters for the atoms of one of I₃- ions when the central atom was constrained to lie on a symmetry centre. Refinement with the above cited atom off the symmetry centre and with an occupancy factor of 0.5 for the three atoms was successful. The agreement factors for the final model are: *R₁* 0.0293 and 0.0463, *wR*₂ 0.0774 and 0.1413 [*I*>2 σ (I)], *R_{int}* 2.26% and 3.05% for **1** and **2** respectively. The refinement results including atomic parameters, bond distances, ans angles are listed in Tables **1** and **2**.

REFERENCES

- Walker, N. and Stuart, D. Acta Crystallogr. 39A, 158 (1983); Ugozzoli, F., Comput. Chem., 11, 109 (1987).
- (2) Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G., Camalli, M. J. Appl. Crystallogr., 27, 435 (1994).
- (3) Sheldrick, G.M.SHELXL-97: *Program for Crystal Structure Refinement*; University of Göttingen: Göttingen, Germany, 1997.

Compound	$Me_2dazdt.2I_2$ (1)	$[Pd(Me_2dazdt)_2(I_3)_2]$
		(2)
Chemical formula	$C_7H_{12}I_4N_2S_2$	$C_{14}H_{24}N_4PdS_4$
Formula weight	695.92	1244.41
Crystal system	monoclinic	monoclinic
Space group	P2/n (No.13)	<i>C2/c</i> (No. 15)
a,Å	8.680(6)	27.354(5)
b,Å	7.713(7)	10.429(7)
<i>c</i> ,Å	12.740(5)	10.823(7)
b , deg	94.38(2)	91.36(2)
<i>V</i> , Å ³	850.4(1.0)	3087(3)
Ζ	2	4
$D_{\rm c}/{\rm Mgm^{-3}}$	2.718	2.678
Wavelength, $\lambda/\text{\AA}$	Mo-Kα(0.71073)	Mo-Kα (0.71073)
T/K	293(2)	293(2)
M , cm ⁻¹	75.52	68.84
Reflns collected	2561	3550
Ind. reflns	2469	3381
$R[I>2\sigma(I)]^a$	0.0293	0.0463
wR_2 (all data) ^b	0.0774	0.1413

Table S1. Crystallographic Data of Compounds 1 and 2

^a $R = \sum |F_{\circ} - F_{\circ}| / \sum |F_{\circ}|$. ^b $wR_{2} = [\sum w (F_{\circ}^{2} - F_{\circ}^{2})^{2} / \sum w F_{\circ}^{4}]^{\frac{1}{2}}$

¹ Compound 1: Me₂dazdt·2I₂, Compound 2: $[Pd(Me_2dazdt)_2](I_3)_2$

 Table S2.
 Selected bond lengths [Å] and angles [deg] for:

a)	$Me_2 daz dt \cdot 2I_2$	(1)	
,	- 2 2	· /	

I(1)-I(2)	2.8183(18)	N-C(2)	1.474(5)
I(1)-S	2.786(2)	N-C(4)	1.463(6)
S-C(1)	1.683(4)	C(1)-C(1')	1.502(7)
N-C(1)	1.315(5)	C(2)-C(3)	1.517(6)
S-I(1)-I(2) C(1)-S-I(1) C(1)-N-C(2) C(1)-N-C(4)	175.07(2) 104.77(13) 118.5(4) 120.6(4)	N-C(1)-C(1') N-C(1)-S C(1')-C(1)-S N-C(2)-C(3)	116.1(3) 125.0(3) 118.9(2) 111.5(4)
C(4) - N - C(2)	120.4(4)	$C(2^{+}) - C(3) - C(2)$	113.5(5)

Symmetry transformation used to generate equivalent atoms:

('): -x+3/2,y,-z+1/2

b) $[Pd(Me_2dazdt)_2](I_3)_2$ (2)

I(1)-I(2)	2.9204(15)	N(1)-C(5)	1.477(12)
I(3)-I(4)	2.881(12)	N(1)-C(6)	1.474(14)
I(4)-I(5)	2.935(12)	N(2)-C(2)	1.298(13)
Pd-S(1)	2.312(3)	N(2)-C(3)	1.456(14)
Pd-S(2)	2.298(3)	N(2)-C(7)	1.470(14)
S(1)-C(1)	1.658(11)	C(1)-C(2)	1.472(15)
S(2)-C(2)	1.704(12)	C(3)-C(4)	1.522(16)
N(1)-C(1)	1.324(12)	C(4)-C(5)	1.523(15)
I(2)-I(1)-I(2 ⁱⁱ)	176.55(6)	C(3)-N(2)-C(7)	115.0(10)
I(3)-I(4)-I(5)	178.5(8)	N(1)-C(1)-C(2)	118.7(10)
S(1)-Pd-S(2 ⁱ)	89.83(11)	N(1) - C(1) - S(1)	124.3(8)
S(1)-Pd-S(2)	90.17(11)	C(2)-C(1)-S(1)	117.1(8)
C(1)-S(1)-Pd	101.0(4)	N(2)-C(2)-C(1)	120.4(10)
C(2)-S(2)-Pd	97.1(4)	N(2)-C(2)-S(2)	122.0(9)
C(1)-N(1)-C(5)	121.0(9)	C(1)-C(2)-S(2)	117.6(9)
C(1)-N(1)-C(6)	121.5(10)	N(2)-C(3)-C(4)	115.3(10)
C(5)-N(1)-C(6)	117.4(10)	C(3)-C(4)-C(5)	109.7(9)
C(2)-N(2)-C(3)	120.7(10)	N(1)-C(5)-C(4)	110.7(9)
C(2)-N(2)-C(7)	124.2(11)		

Symmetry transformations used to generate equivalent atoms: $\binom{i}{2}$: -x+1, -y, -z+1; $\binom{ii}{2}$: -x+1, y, -z+1/2

Synthesis and Characterization of Model Three-Way Catalysts

 $Ce_{0.6}Zr_{0.4}O_2(10 \text{ wt.}\%)/Al_2O_3$ was prepared by impregnating δ -Al_2O_3 with cerium/zirconium citrate solution. 4.72 g of Ce(NO₃)₃·6H₂O (99.99%, Aldrich) and 2.46 g of ZrO(NO₃)₂·6H₂O (99.99%, Aldrich) were dissolved in 40 mL, then 30 mL of a 1.25 M water solution of C₆H₈O₇·H₂O (99.8%, Carlo Erba) was added. The metal cation to ligand ratio was 1 to 2.1. The resulting solution was stirred at 75 °C for 5 hrs, then at room temperature for 12 hrs, and finally concentrated to 15 mL in order to carry out an "incipient wetness" impregnation on 25.0 g of the Al₂O₃ support (pore volume of 0.6 mL/g). The material was dried at 120 °C for 12 hrs, heated up to 500 °C (heating rate: 3 $^{\circ}$ C/min) and then calcined at this temperature for 5 hrs to obtain a yellow powder. Pd (0.5 – 3 wt. %) was loaded onto the support by "incipient wetness" technique using a palladium nitrate solution. A Pd-impregnated δ -Al₂O₃ was prepared as a conventional standard. After drving, the materials were calcined at 500 °C for 5 hrs (heating rate of 3 °C/min). Finally all catalysts were aged by calcination in air at 1050 °C for 200 hrs. Thus following ageing, a strong sintering of all the catalysts occurred and the total surface area decreased from 100 m^2/g to below 15 m^2/g , concomitantly with the transformation of δ -alumina into α -alumina. In the ceria-zirconia based catalysts, this phase transition was kinetically inhibited. Finally, the severe ageing protocol induced a phase segregation of the $Ce_{0.6}Zr_{0.4}O_2$ solid solution in a CeO_2 rich phase and a ZrO_2 rich one. (Figure 1)

Figure 1: Powder XRD spectra of (1) 0.7% Pd/Al₂O₃ (2) 0.7% Pd/Ce_{0.6}Zr_{0.4}O₂(10%)/Al₂O₃ e (3) 2.8% Pd/Ce_{0.6}Zr_{0.4}O₂(10%)/Al₂O₃ calcined at 1050°C for 200 h.

