Ruthenium-Catalyzed Coupling of Aldimines with Arylboronates: New Synthetic Method of Diaryl Ketones

Young Jun Park, Eun-Ae Jo and Chul-Ho Jun*
${ }^{\text {a }}$ Department of Chemistry and Center for Bioactive Molecular Hybrid (CBMH), Yonsei University, Seoul 120-749, Korea. Fax: 0802364 7050; Tel: 08022123 2627; E-mail:junch@yonsei.ac.kr

Electronic Supplementary Information (ESI)

General Experiments. Flash column chromatography was performed using E. Merck 230-400 mesh silica gel. Column chromatography were monitored by analytical thinlayer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates ($60 \mathrm{~F}-$ 254) using UV light as a visualizing agent and p-anisaldehyde solution, and heat as developing agent. Infrared spectra were obtained on a Nicolet Impact 400 spectrometer. Gas chromatographic analyses were performed on a Donam DS 6200 instrument with FID detector and a Hewlett Packard HP-5 capillary column. Low- resolution mass spectra were measured on a Hewlett-Packard HP G1800A GCD system equipped with a Hewlett Packard HP-5 capillary column. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Advance/DPX 250 with chemical shifts reported relative to residual deuterated solvent peaks. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to tetramethylsilane ($\delta 0.00 \mathrm{ppm}$) as an internal standard and are reported as follows: chemical shift, multiplicity ($\mathrm{br}=\mathrm{broad}, \mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet). ${ }^{13} \mathrm{C}$ NMR spectra were referenced to the residual $\mathrm{CDCl}_{3}(\delta 77.0 \mathrm{ppm})$. Elemental Analysis was performed by the Organic Chemistry Research Center, Sogang University (Seoul 121-742, Korea). High-resolution mass spectrometry was performed by the National Center for Inter-University Facilities, Seoul National University (Seoul 151-742, Korea).

Materials. All commercially available reagent grade chemicals (aldehydes, 2-amino-3picoline, 1-hexene, cyclohexene, methyl vinyl ketone, 1-cyclohexenone, $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$,
boronic acids) were purchased from Aldrich Chemical Company, TCI, and Junsei Chemical Company and used as received without further purification unless otherwise stated. Anhydrous 1,4-dioxane (Aldrich) and acetone (Merck) were purchased. Reactions requiring anhydrous conditions were performed under argon using a glove box.

Preparation of Picolyl-Imines

The following aldimines are known compounds and gave data consistent with that reported in the literature:

Benzylidene-(3-methyl-pyridin-2-yl)-imine (1a) ${ }^{1}$ and 4-methoxybenzylidene-(pyridin-2-yl)-imine ($\mathbf{1 b})^{2}$

The preparation of 4-trifluoromethylbenzylidene-(3-methyl-pyridin-2-yl)-imine (1c):

4-Trifluoromethyl-benzaldehyde ($2 \mathrm{~g}, 11.48 \mathrm{mmol}$) was added to a stirred solution of p TSA ($5 \mathrm{~mol} \%, 98.8 \mathrm{mg}$) in benzene (20 mL) at room temperature. 2-Amino-3-picoline $(1.24 \mathrm{~g}, 11.48 \mathrm{mmol})$ was added and the mixture was refluxed overnight in a Dean-Stark apparatus. When no further evolution of water was observed the reaction mixture was cooled and concentrated in-vacuo. The residue was purified by distillation under reduced pressure to give the imine ($2.15 \mathrm{~g}, 71 \%$) as a reddish oil. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: δ $9.1(\mathrm{~s}, 1 \mathrm{H}), 8.3$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.1(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.7(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.5(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}) 7.1(\mathrm{dd}, J=4.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.4(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $159.8,158.6,146.2,139.4,139.1,132.6\left(\mathrm{q}, J_{\mathrm{CF}}=32 \mathrm{~Hz}, \mathrm{CF}_{3}\right.$), 129.5, 126.1, 125.6, 122.5, 121.8, 17.3; MS: $m / z(\%): 263\left(\mathrm{M}^{+}-\mathrm{H}^{+}, 40.0\right) 245$ (4.5), 236 (7.4), 222 (0.4), 195 (2.2), 167 (2.0), 145 (2.4), 119 (6.1), 93 (100), 65 (10.5), 51 (1.3), 27 (0.4); IR (neat): 3048, 2928, 1624, 1573, 1452, 1416, 1323, 1260, 1210, 1167, 1127, 1064, 1016, 986, 890, 841, $790,598 \mathrm{~cm}^{-1}$; Elemental Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2}$: C ; 63.63, H ; 4.20, $\mathrm{N} ; 10.60$ found $\mathrm{C} ; 63.65, \mathrm{H} ; 4.14, \mathrm{~N} ; 10.54$.

Aminals (1d, 1e)

The following aminals have the above dissociation process also in solution $\left(\mathrm{CDCl}_{3}\right)$. For this reason, only major ${ }^{1} \mathrm{H}$ NMR chemical shifts of aminal are presented.

The preparation of \boldsymbol{N}-(1-(3-methylpyridin-2-ylamino)hexyl)-3-methylpyridin-2-amine (1d):

N-(1-(3-methylpyridin-2-ylamino)hexyl)-3-methylpyridin-2-amine
n-hexanal ($1 \mathrm{~g}, 9.98 \mathrm{mmol}$) was added to 2-amino-3-picoline (2 equiv.) at room temperature over $4 \AA$ molecular sieve. On standing at room temperature for 2 days, pale yellow solid was formed. It was dissolved in methylene chloride and filtered. The resulting solution was concentrated and then re-crystallized from methylene chloride/hexane mixture at refrigerator. And it was filtered and dried in-vacuo to give the aminal as a white solid $(82 \%, 2.44 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}$ $2 \mathrm{H}), 7.1(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.4(\mathrm{dd}, J=4.0,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH})$, $5.6(\mathrm{dt}, J=7.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.2(\mathrm{bq}, 2 \mathrm{H}), 1.4-1.3(\mathrm{~m}, 6 \mathrm{H}), 0.9-0.8(\mathrm{~m}, 3 \mathrm{H})$; IR (KBr) : 3361, 3292, 2960, 2915, 2854, 1600, 1582, 1512, 1469, 1410, 1381, 1331, 1306, 1282, $1249,1038,993,765,701,646,523 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4}$ 298.2157; found $299.2232\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

The preparation of N-((3-methylpyridin-2-ylamino)(cyclohexyl)methyl)-3-methylpyridin-2-amine (1e):

Cyclohexane carboxaldehyde ($1 \mathrm{~g}, 8.91 \mathrm{mmol}$) was added to 2 -amino-3-picoline (2 equiv) at room temperature over $4 \AA$ molecular sieve. On standing at room temperature for 2 days, pale yellow solid was formed. It was dissolved in methylene chloride and filtered. The resulting solution was concentrated and then re-crystallized from methylene chloride/hexane mixture at refrigerator. And it was filtered and dried in-vacuo to give the aminal as a pale yellow solid $(67 \%, 1.85 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.9(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz} 2 \mathrm{H}), 7.1$ (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.4(\mathrm{dd}, J=4.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.7(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, NH), 5.3 (bq, 1H), 2.5 (m, 1H), 1.7-0.9 (m, 10H); IR (KBr): 3414, 3003, 2921, 2846, $1608,1473,1413,1383,1308,1252,1181,1144,1110,1062,1024,994,953,893,770$, $699,605,549,504 \mathrm{~cm}^{-1}$; HRMS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4}$ 310.2157; found 311.2231 $\left(\mathrm{M}+\mathrm{H}^{+}\right)$. Elemental Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{4}: \mathrm{C} ; 73.51, \mathrm{H} ; 8.44, \mathrm{~N} ; 18.05$ found C ; 73.57, H; 8.46, N ; 18.04.

Coupling Reactions

The following ketones, coupling adducts, are known compounds (commercially available) and were identified by comparison with authentic sample.

Benzophenone (4aa) (registry number: 119-61-9), (4-methoxyphenyl)(phenyl)methanone (4ab) (registry number: 611-94-9), (4-methylphenyl)(phenyl)methanone (4ac) (registry number: 134-84-9), (2-methylphenyl)(phenyl)methanone (4ad) (registry number: 131-588), (4-fluorophenyl)(phenyl)methanone (4ae) (registry number: 345-83-5), (4chlorophenyl)(phenyl)methanone (4af) (registry number: 134-85-0), (3chlorophenyl)(phenyl)methanone (4ag) (registry number: 1016-78-0), (4bromophenyl)(phenyl)methanone (4ah) (registry number: 90-90-4), bis(4-methoxyhenyl) methanone (4bb) (registry number: 90-96-0), (4-(trifluoromethyl)phenyl)(4methoxyphenyl)methanone (4cb) (registry number: 6185-76-8), 1-(4-methoxyphenyl)hexan-1-one (4db) (registry number: 6397-82-6), and cyclohexyl(4fluorophenyl)methanone (4ee) (registry number: 85014-02-4) and 1-phenylheptan-1-one (8) (registry number: 1671-75-6)
$\mathbf{4 c b}{ }^{3}$ (registry number: 6185-76-8), $\mathbf{4 d e}^{4}$ (registry number: 1426-70-6), 4eb ${ }^{5}$ (registry number: 7469-80-9) and $7 \mathbf{a}^{6}$ (registry number: 70720-38-6) are known compounds and gave data consistent with that reported in the literature.

3-methyl- N-(diphenylmethylene)pyridin-2-amine
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.1$ (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.8 (d, $J=7.1,2 \mathrm{H}$), 7.4-7.1 (m, $9 \mathrm{H}), 6.7(\mathrm{dd}, J=4.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9$, 138.2, 129.8, 129.0, 128.2, 127.9, 123.3, 118.9, 17.6; MS: $m / z(\%): 272\left(\mathrm{M}^{+}, 33.7\right), 271$ (69.5), 243 (0.4), 228 (0.2), 195 (14.8), 168 (100), 136 (7.3), 135 (13.9), 115 (2.2), 92 (15.9), 51 (3.2), 39 (3.3), 18 (0.3); IR (neat): 2925, 1629, 1583, 1414, 1342, 1113, 954, 793, 697, $582 \mathrm{~cm}^{-1}$.

References

1 C. H. Jun, Bull. Korean Chem. Soc., 1990, 11, 187.
2 M. C. Willis and S. Sapmaz, Chem. Commun., 2001, 2558.
3 W. J. Leigh, D. R. Arnold, R. W. R. Humphreys and P. C. Wong, Can. J. Chem., 1980, 58, 2537.
4 T. Shimada and Y. Yamamoto, J. Am. Chem. Soc., 2002, 124, 12670.

5 B. C. Ranu, K. Ghosh and U. Jana, J. Org. Chem., 1996, 61, 9546.
6 N, Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi and S. Murai, J. Am. Chem. Soc., 2001, 123, 10935.

