Electronic supplementary information for

The first X-ray crystal structure determination of a dinuclear complex trapped in the [low spin-high spin] state: $\left[\mathrm{Fe}^{\mathrm{II}}{ }_{2}\left(\mathrm{PMAT}_{2}\right]\left(\mathrm{BF}_{4}\right)_{4} \cdot\right.$ DMF

Marco H. Klingele, Boujemaa Moubaraki, John D. Cashion, Keith S. Murray* and Sally Brooker*

Experimental:

Preparation of $\left[\mathrm{Fe}_{2}{ }_{2}\left(\mathrm{PMAT}_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}\right.$ (1): A colourless solution of $\mathrm{Fe}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(84 \mathrm{mg}, 0.25 \mathrm{mmol})$ in MeCN $(5 \mathrm{~mL})$ was added dropwise to a colourless solution of PMAT 17 ($81 \mathrm{mg}, 0.25 \mathrm{mmol}$) in MeCN (10 mL). The resulting red solution was stirred at room temperature for 1 hour during which time the product precipitated from the reaction mixture. The solid was filtered off and washed with MeCN and $\mathrm{Et}_{2} \mathrm{O}$. Drying in vacuo gave 105 $\mathrm{mg}(76 \%)$ of $\left[\mathrm{Fe}_{2}{ }_{2}(\mathrm{PMAT})_{2}\right]\left(\mathrm{BF}_{4}\right)_{4}$ as a pale yellow powder. Elemental analysis (\%) calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{16}\left(1107.69 \mathrm{~g} \mathrm{~mol}^{-1}\right): \mathrm{C} 34.70, \mathrm{H} 3.64, \mathrm{~N}$ 20.23; found C 34.68, H $3.50, \mathrm{~N} 19.89$. IR (KBr): v / cm^{-1} $=3125,2916,1607,1570,1558,1489,1438,1375,1306$, 1239, 1083, 1036, 891, 816, 766, 730, 668, 645, 538, 521, 467. ESI-MS (pos., MeCN): $m / z=163.4\left[(\mathrm{PMAT}) \mathrm{H}_{2}\right]^{2+}$, $325.3 \quad[(\mathrm{PMAT}) \mathrm{H}]^{+}, \quad 352.2 \quad\left[\mathrm{Fe}(\mathrm{PMAT})_{2}\right]^{2+}, \quad 413.2$ $\left[(\mathrm{PMAT})\left(\mathrm{BF}_{4}\right) \mathrm{H}_{2}\right]^{+}, \quad 790.6 \quad\left[\mathrm{Fe}(\mathrm{PMAT})_{2}\left(\mathrm{BF}_{4}\right)\right]^{+}, \quad 879.5$ $\left[\mathrm{Fe}(\mathrm{PMAT})_{2}\left(\mathrm{BF}_{4}\right)_{2} \mathrm{H}\right]^{+}$. Molar conductivity (DMF): $\Lambda_{\mathrm{m}} /$ $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}=224$.

Magnetic susceptibility studies were carried out on $\mathbf{1} \cdot \mathbf{D M F}$ using a Quantum Design MPMS SQUID magnetometer with an applied field of 1 T . The polycrystalline sample was contained in a calibrated gelatine capsule which was held in the centre of a soda straw fixed to the end of the sample rod. The magnetic data were also measured with the sample dispersed in a Vaseline mull to eliminate any crystallite orientation effects often evident as anomalous $\mu_{\text {eff }} v s$. T plots in orbitally degenerate systems such as octahedral $\mathrm{Fe}^{\mathrm{II}}$. None was evident here. The magnetisation values of the instrument were calibrated against a standard palladium sample, supplied by Quantum Design, and also against chemical calibrants such as $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)$.

The Mössbauer spectrum was obtained using a conventional constant acceleration drive with a symmetrical sawtooth waveform. The source of ${ }^{57} \mathrm{Co}$ in rhodium was maintained at room temperature. The iron complex was loaded into a piston type Perspex holder. The holder was placed in a cold-finger type cryostat in good thermal contact with the reservoir which contained liquid nitrogen. Drive calibration was carried out using an α-Fe foil and isomer shifts are quoted relative to $\alpha-\mathrm{Fe}$ at room temperature. The spectrum was fitted to Lorentzian lines, with the matching lines of a doublet constrained to have the same intensity and linewidth.

X-Ray data were collected at 123 and 298 K on a $0.25 \times$ $0.30 \times 0.40 \mathrm{~mm}^{3}$ prism of $\mathbf{1} \cdot \mathbf{D M F}\left(\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~B}_{4} \mathrm{~F}_{16} \mathrm{Fe}_{2} \mathrm{~N}_{17} \mathrm{O}\right)$, obtained by evaporation of a $4: 1 \mathrm{MeCN} / \mathrm{DMF}$ solution, using a Nonius Kappa CCD diffractometer with graphitemonochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Extensive hydrogen bonding, between the hydrogen atoms on the nitrogen atoms of PMAT and the BF_{4}^{-}anions and DMF solvate, is present in both structures. CCDC 247510 and 247511 contain the supplementary crystallographic data for this paper. These data can be obtained online free of charge from http://www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; e-mail: deposit@ccdc.cam.ac.uk].

Fig. S1 Perspective view of $\mathbf{1} \cdot \mathbf{D M F}$ at 298 K . The $\mathrm{BF}_{4}{ }^{-}$anions, the DMF solvate and all hydrogen atoms, except those bonded to nitrogen atoms, have been omitted for clarity. Symmetry operation used to generate equivalent atoms: $(\mathrm{A})-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$.

Selected distances [A] of 1•DMF at 298 K:
$\mathrm{Fe}(2)-\mathrm{N}(1) \quad 2.148(4), \mathrm{Fe}(2)-\mathrm{N}(2) \quad 2.289(5), \mathrm{Fe}(2)-\mathrm{N}(3)$ 2.123(4), $\mathrm{Fe}(2)-\mathrm{N}(4 \mathrm{~A}) 2.116(4), \mathrm{Fe}(2)-\mathrm{N}(5 \mathrm{~A})$ 2.303(5), $\mathrm{Fe}(2)-\mathrm{N}(6 \mathrm{~A}) 2.147(5), \mathrm{Fe}(2) \cdots \mathrm{Fe}(2 \mathrm{~A}) 4.297(2)$.
$N-F e-N$ and $N-N-F e$ angles [${ }^{\circ}$] for 1•DMF at 298 K :
$\mathrm{N}(4 \mathrm{~A})-\mathrm{Fe}(2)-\mathrm{N}(3) \quad 92.80(15), \quad \mathrm{N}(4 \mathrm{~A})-\mathrm{Fe}(2)-\mathrm{N}(6 \mathrm{~A})$ 94.54(17), $\mathrm{N}(3)-\mathrm{Fe}(2)-\mathrm{N}(6 \mathrm{~A}) 100.17(17), \mathrm{N}(4 \mathrm{~A})-\mathrm{Fe}(2)-$ $\mathrm{N}(1)$ 97.15(17), $\mathrm{N}(3)-\mathrm{Fe}(2)-\mathrm{N}(1)$ 93.84(16), $\mathrm{N}(6 \mathrm{~A})-$ $\mathrm{Fe}(2)-\mathrm{N}(1) \quad 161.26(18), \mathrm{N}(4 \mathrm{~A})-\mathrm{Fe}(2)-\mathrm{N}(2) \quad 166.40(16)$, $\mathrm{N}(3)-\mathrm{Fe}(2)-\mathrm{N}(2) \quad 75.92(16), \quad \mathrm{N}(6 \mathrm{~A})-\mathrm{Fe}(2)-\mathrm{N}(2)$ 94.91(18), $\mathrm{N}(1)-\mathrm{Fe}(2)-\mathrm{N}(2) \quad 76.40(17), \quad \mathrm{N}(4 \mathrm{~A})-\mathrm{Fe}(2)-$ $\mathrm{N}(5 \mathrm{~A}) 75.93(16), \mathrm{N}(3)-\mathrm{Fe}(2)-\mathrm{N}(5 \mathrm{~A}) 167.66(17), \mathrm{N}(6 \mathrm{~A})-$ $\mathrm{Fe}(2)-\mathrm{N}(5 \mathrm{~A}) \quad 76.13(18), \quad \mathrm{N}(1)-\mathrm{Fe}(2)-\mathrm{N}(5 \mathrm{~A})$ 92.57(17), $\mathrm{N}(2)-\mathrm{Fe}(2)-\mathrm{N}(5 \mathrm{~A}) \quad 115.90(17), \quad \mathrm{N}(4)-\mathrm{N}(3)-\mathrm{Fe}(2)$ 133.6(3).

Summary of hydrogen bonding for 1•DMF at $298 \mathrm{~K}\left[H^{\prime \prime} A\right.$ $<r(A)+2.000 \AA$ and $<D H A>110^{\circ}$:

D-H	d(D-H)			$\mathrm{d}\left(\mathrm{H}^{\prime} \mathrm{A}\right.$ A)	<DHA
	$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$		A		
N2-H2X	2.820	0.949		1.940	153.27
			F26_b [, -y, z^{+}	
N2-H2X		0.949		2.220	151.80
	3.090		F22_a	-y, -z	
N2-H2X		0.949		2.330	149.53
	3.185		F23_a [,-y, -z	
N5-H5X		0.952		2.243	146.04
	3.079		F16_b [-1, -y+1	z+1]
N5-H5X		0.952		2.300	152.89
	3.177		F17_b [-1, $-\mathrm{y}+1$	$\mathrm{z}+1]$
N5-H5X		0.952		2.537	167.63
	3.472		F14_a	-1, $-\mathrm{y}+1$	z+1]
N5-H5X		0.952		2.603	140.57
	3.392		F13_a	-1, $-\mathrm{y}+1$	z+1]
N8-H8X		0.930		2.104	134.15
	2.831		F25_b		
N8-H8X		0.930		2.313	124.95
	2.946		O100		
N8-H8X		0.930		2.364	139.00
	3.126		F21_a		
N8-H8Y		0.951		2.026	133.45
	2.768		F15_b		
N8-H8Y		0.951		2.193	135.14
	2.945		F11_a		

Selected distances [A] of $\mathbf{1} \cdot \mathbf{D M F}$ at 123 K:
$\mathrm{Fe}(1)-\mathrm{N}(1) \quad 1.987(4), \mathrm{Fe}(1)-\mathrm{N}(2) \quad 2.066(4), \mathrm{Fe}(1)-\mathrm{N}(3)$ $1.946(3), \quad \mathrm{Fe}(2)-\mathrm{N}(4)$ 2.136(3), $\mathrm{Fe}(2)-\mathrm{N}(5)$ 2.319(4), $\mathrm{Fe}(2)-\mathrm{N}(6) 2.159(4), \mathrm{Fe}(1)-\mathrm{N}(9) 1.986(4), \mathrm{Fe}(1)-\mathrm{N}(10)$ $2.071(4), \mathrm{Fe}(1)-\mathrm{N}(11) 1.934(3), \mathrm{Fe}(2)-\mathrm{N}(12) 2.131(3)$, $\mathrm{Fe}(2)-\mathrm{N}(13) 2.312(4), \mathrm{Fe}(2)-\mathrm{N}(14) 2.155(4), \mathrm{Fe}(1) \cdots \mathrm{Fe}(2)$ 4.2124(14).

$N-F e-N$ and $N-N-F e$ angles [${ }^{\circ}$] for $\mathbf{1 \cdot D M F}$ at 123 K :

$\mathrm{N}(11)-\mathrm{Fe}(1)-\mathrm{N}(3) \quad 95.43(14), \quad \mathrm{N}(11)-\mathrm{Fe}(1)-\mathrm{N}(9)$ 91.69(15), $\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(9) 94.84(14), \mathrm{N}(11)-\mathrm{Fe}(1)-\mathrm{N}(1)$ 94.37 (14), $\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(1) 91.25(14), \mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(1)$ 170.96(14), $\mathrm{N}(11)-\mathrm{Fe}(1)-\mathrm{N}(2) 175.38(14), \mathrm{N}(3)-\mathrm{Fe}(1)-$ $\mathrm{N}(2) 81.86(14), \mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(2) 92.26(15), \mathrm{N}(1)-\mathrm{Fe}(1)-$ $\mathrm{N}(2) 81.99(15), \quad \mathrm{N}(11)-\mathrm{Fe}(1)-\mathrm{N}(10) 81.79(14), \mathrm{N}(3)-$ $\mathrm{Fe}(1)-\mathrm{N}(10) \quad 175.92(15), \mathrm{N}(9)-\mathrm{Fe}(1)-\mathrm{N}(10)$ 82.29(15), $\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(10) \quad 91.93(14), \quad \mathrm{N}(2)-\mathrm{Fe}(1)-\mathrm{N}(10)$ 101.11(15), $\mathrm{N}(12)-\mathrm{Fe}(2)-\mathrm{N}(4) 87.92(13), \mathrm{N}(12)-\mathrm{Fe}(2)-$ $\mathrm{N}(14)$ 93.58(13), $\mathrm{N}(4)-\mathrm{Fe}(2)-\mathrm{N}(14)$ 101.83(14), $\mathrm{N}(12)-$ $\mathrm{Fe}(2)-\mathrm{N}(6) \quad 107.13(14), \quad \mathrm{N}(4)-\mathrm{Fe}(2)-\mathrm{N}(6) \quad 94.23(14)$, $\mathrm{N}(14)-\mathrm{Fe}(2)-\mathrm{N}(6) \quad 154.24(14), \quad \mathrm{N}(12)-\mathrm{Fe}(2)-\mathrm{N}(13)$ 75.13(13), N(4)-Fe(2)-N(13) 162.72(13), N(14)-Fe(2)$\mathrm{N}(13) 76.37(14), \mathrm{N}(6)-\mathrm{Fe}(2)-\mathrm{N}(13) 93.98(14)$, $\mathrm{N}(12)-$ $\mathrm{Fe}(2)-\mathrm{N}(5) \quad 163.15(13), \quad \mathrm{N}(4)-\mathrm{Fe}(2)-\mathrm{N}(5) \quad 75.24(13)$, $\mathrm{N}(14)-\mathrm{Fe}(2)-\mathrm{N}(5) 89.53(14), \mathrm{N}(6)-\mathrm{Fe}(2)-\mathrm{N}(5) 75.14(15)$, $\mathrm{N}(13)-\mathrm{Fe}(2)-\mathrm{N}(5) 121.65(14), \mathrm{N}(4)-\mathrm{N}(3)-\mathrm{Fe}(1)$ 134.3(3), $\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{Fe}(2) 133.9(2), \mathrm{N}(12)-\mathrm{N}(11)-\mathrm{Fe}(1) 134.0(2)$, $\mathrm{N}(11)-\mathrm{N}(12)-\mathrm{Fe}(2) 134.4(2)$.

Summary of hydrogen bonding for 1•DMF at $123 \mathrm{~K}\left[H^{*} \mathrm{~A}\right.$ $<r(A)+2.000$ A and $<D H A>110^{\circ}$:

D-H	d(D-H)	$\mathrm{d}\left(\mathrm{H}^{\cdots} \mathrm{A}\right)$	$<$ DHA
$\mathrm{d}(\mathrm{D} \cdots \mathrm{A})$		A	
N2-H2X	0.938	2.191	155.77
3.070		F12 [$\mathrm{x}-1, \mathrm{y}, \mathrm{z}$]	
N2-H2X	0.938	2.229	144.32
3.040		F13 [x-1, y, z]	
N5-H5X	0.830	2.381	150.76
3.132		F43 [-x+1, -y+1, -z+	
N5-H5X	0.830	2.605	136.34
3.257		F44 [-x+1, -y+1, -z+	
N8-H8X	0.800	2.104	154.26
2.846		F41	
N8-H8Y	0.779	2.339	153.39
3.056		F33 [x-1, y, z]	
N8-H8Y	0.779	2.391	120.67
2.868		O200_b	
N10-H10X	0.913	2.112	151.08
2.945		F22 [-x+1, -y, -z+1]	
N10-H10X	0.913	2.423	149.93
3.246		F23 [$-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1]$	
N13-H13X	0.899	2.198	147.65
2.996		F31	
N13-H13X	0.899	2.338	149.57
3.146		F32	
N16-H16X	0.918	2.232	123.56
2.844		F21	
N16-H16Y	0.650	2.316	163.01
2.944		F11	

