Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

Supplementary material

*Catalyst generation*¹

 $Na_2WO_4 \cdot 2H_2O$ (62.5 g, 0.19 mol) was dissolved in water (175 mL) at 85 °C. At this temperature, aqueous 37 % HCl (13.3 mL, 0.16 mol) was added. The yellow solid that was formed dissolved almost immediately, and the reaction mixture was heated to 95 °C. A solution of ZnCl₂ (6.81 g, 50 mmol) in water (75 mL) was added drop wise in 4 hours to the well-stirred solution. The slightly turbid mixture was added to a solution of Aliquat 336 (40 g, 0.10 mol) in toluene, and the mixture was stirred for 6 hours. The layers were separated and the aqueous layer was washed with pure toluene. The combined toluene layers were dried on Na_2SO_4 and the Zn-content was measured by ICP-AES (see below). A POM-concentration of 6.4 mM Q₁₂POM in toluene was calculated.

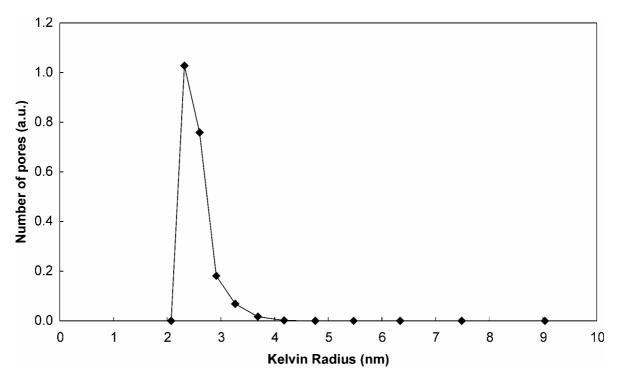
\mathcal{L}										
	Pressure	Zn		W		Retention based on				
	(bar)	g/kg	mg/kg	g/kg	mg/kg	Zn	W			
Starting solution		0.21		1.42		-	-			
Sample 1	5.4		0.12		1.5	>99.9%	99.9%			
Sample 2	8.9		0.09		0.4	>99.9%	>99.9%			
Sample 3	10.5		0.05		2.1	>99.9%	99.9%			
Sample 4	11.2		0.05		2.3	>99.9%	99.8%			
Sample 5	12.9		0.03		3.8	>99.9%	99.7%			
Retentate		0.23		1.57		-	-			

Retention measurements of $Q_{12}POM$ stock solution

Q₁₂POM recycling

	Amount permeate	Zn	W	Retention based on	
	g	mg/kg	mg/kg	Zn	W
Permeate 1	9.04	0.5	272	>99.9%	97.8%
Permeate 2	8.14	< 0.2	133	>99.9%	99.0%
Permeate 3	10.75	13	685	98.6%	93.4%
Permeate 4	10.54	0.8	335	>99.9%	96.9%
Permeate 5	10.68	0.3	143	>99.9%	98.7%

Supplementary Material (ESI) for Chemical Communications

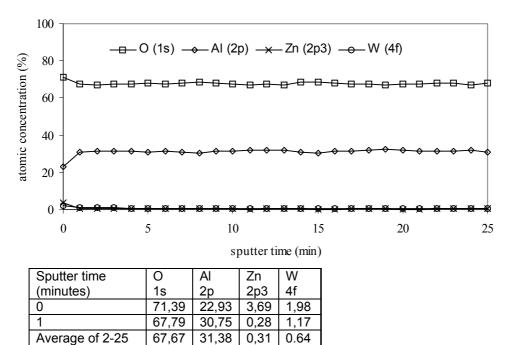

This journal is © The Royal Society of Chemistry 2005

Membrane preparation

The γ -alumina membrane consists of a macroporous α -alumina support and a thin mesoporous γ -alumina layer. The α -alumina supports were made by colloidal filtration of well-dispersed 0.4 mm α -alumina particles (AKP-30, Sumitomo). The dispersion was stabilized by peptizing with nitric acid. After drying at room temperature, the filter compact was sintered at 1100°C. Flat disks of Ø 39 mm and 2.0 mm thickness were obtained after machining and polishing. The final porosity of these supports is ~30% and the average pore size is in the range of 80-120 nm. Mesoporous γ -alumina membranes of ~3 mm thickness were prepared by dip-coating twice the above-mentioned porous α -alumina supports in a boehmite sol, followed by drying and calcining at 600°C for 1 h (heating/cooling rates 0.5°C/min)

Membrane analysis

The γ -alumina membrane was characterized by permporometry.² The pore size (d, in nm) is defined by d = 2·(r_K + t), where r_K is the Kelvin radius, and t the layer thickness of the t-layer (~0.3 nm).



Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

XPS measurements

X-ray Photoelectron Spectroscopy (PHI Quantera Scanning ESCA Microprobe, USA) with Ar⁺ sputtering was carried out to identify the atomic concentrations of O, Al, Zn, and W by measuring the O 1s, Al 2p, Zn 2p3, and W 4f spectra as a function of depth inside the layer at a sputter rate of 17.9 nm/min.

0,31

31,38

References:

C.M. Tourné, G.F. Tourné and F. Zonnevijlle, J. Chem. Soc. Dalton Trans., 1 1991, 431.

0.64

2 N. Benes, A. Nijmeijer and H. Verweij, Mesoporous silica membranes, in: N.K. Kanellopoulos, ed., Recent Advances in Gas Separation by Microporous Ceramic Membranes, Elsevier, Amsterdam, 2000.