Electronic Supplementary Information

for

Mild metal-free syn-stereoselective ring opening of activated epoxides and aziridines with aryl borates.

Mauro Pineschi*, Ferruccio Bertolini, Robert M. Haak, Paolo Crotti, and Franco Macchia

Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy

List of contents

-Indication of Materials and Methods used (page 2)

- Synthesis of aromatic borates (page 3)
-Typical Procedure for the ring openings (page 3)
-Text giving experimental procedures, syn/anti determinations and characterization data for all new compounds 2-12 (pages 4-12)
-Additional results of the ring opening of epoxides and aziridines with aryl borates 1a,b. TABLE 2 (page 13).
-Text giving experimental procedures and characterization data for all new compounds 13-21 (pages 14-18)

General Methods. THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DMF on molecular sieves were purchased from Fluka and used as such. Analytical TLC were performed on Alugram SIL G/UV254 silica gel sheets (Macherey-Nagel) with detection by 0.5% phosphomolybdic acid solution in 95% EtOH. Silica gel 60 (MachereyNagel 230-400 mesh) was used for flash chromatography. Solvents for extraction and chromatography were HPLC grade.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC-200 spectrometer. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: δ 7.26). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-200 (50 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard (deuterochloroform: δ 77.7). Analytical high performance liquid chromatography (HPLC) was performed on a Waters 600E equipped with a Varian Prostar 325 detector using Daicel Chiralcel OD-H column with a 0.5 mL solvent flow and detection at 254 nm .

GC/MS spectra were obtained on a HP-5988-A operating at 70 eV . Mass spectra ESIMS were measured on a Finnigan LC-Q Deca Termoquest spectrometer, equipped with a software Xcalibur. High resolution mass spectra (HRMS) were recorded on a AEI MS-902 at the Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, The Netherlands.

Elemental analyses were performed in our analytical laboratory with a Carlo Erba DP200 instrumentation and agreed with the theoretical values to within $+/-$ 0.4\%.

Synthesis of aromatic borates.

Triphenylborate (1a). ${ }^{1}$ Following a previuosly described procedure, ${ }^{1}$ a solution of phenol $(8.460 \mathrm{~g}, 90 \mathrm{mmol})$ in degassed THF $(20 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ to $\mathrm{BH}_{3}-$ $\mathrm{Me}_{2} \mathrm{~S}(3.0 \mathrm{~mL}, 30 \mathrm{mmol})$ under argon. After stirring for 1 h at rt , the solution was evaporated and to dryness to give 1a, as a white solid (95% yield).

Catechol butyl borate [butoxy-benzo[1,3,2]dioxaborole] (1b). ${ }^{2}$ A mixture of catechol ($5.61 \mathrm{~g} ; 50.9 \mathrm{mmol})$ and tributyl borate ($15 \mathrm{ml} ; 12.9 \mathrm{~g}, 56 \mathrm{mmol}$) in toluene (50 mL) was refluxed for 17 hours. After removal of the solvent by means of distillation at ambient pressure, the product is purified by distillation $\left(78^{\circ} \mathrm{C}\right.$, ca. 5 mmHg) to give 6.0 g of pure $\mathbf{1 b}$ (62% yield), as a colorless liquid.

Ring-opening of epoxides and aziridines

Typical Procedure as follows: aryl borate $\mathbf{1 a}(1.2 \mathrm{mmol})$ or $\mathbf{1 b}(2.0 \mathrm{mmol})$ was added at rt to a solution of 1.0 mmol of epoxide or aziridine in the appropriate solvent (1.0 mL) (see Table 1) under a magnetic stirring. The reaction was followed by TLC and was quenched, after the times indicated in Table 1, with 5\% aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$ for the reactions carried out with $\mathbf{1 b}$, or 5% aqueous NaOH $(2.0 \mathrm{~mL})$ for the reactions carried out with $\mathbf{1 a}$. The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL) and washed twice with brine (3.0 ml each) for reactions carried out with borate $\mathbf{1 b}$ and with $5 \% \mathrm{NaOH}(2 \mathrm{X} 3 \mathrm{~mL})$ for reactions performed with 1a. Evaporation of the dried organic solution afforded a crude reaction mixture which was subjected to flash chromatography to give the pure compounds.

[^0] hexanes).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.68-2.41(\mathrm{~m}, 4 \mathrm{H}), 4.03-4.17(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{OH}), 4.51-4.58$ (m, 1H, -CH-O-Ar), 5.72-6.02 (m, 2H), 6.71-6.98 (m, 4H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.7,26.7,68.5,77.7,116.8,118.5,120.8,124.2,124.6$, 132.9, 146.1, 148.6 .

MS $206\left(\mathrm{M}^{+}, 1\right), 110(81), 96(40), 78$ (100), 67 (26), 54 (30), 39 (83).

Reference anti-2-(2-hydroxyphenoxy)-3-cyclohexen-1-ol was obtained in the following way: to a stirred solution of 1,2-epoxy-3-cyclohexene ($96 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in acetone $(2.0 \mathrm{~mL})$, catechol ($132 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(276.4 \mathrm{mg}$, 2.0 mmol) were added. The reaction was maintained under vigorous stirring for 24 h at $55^{\circ} \mathrm{C}$. After filtration, the resulting mixture was evaporated in vacuo to give a crude mixture containing mainly the reference anti-compound. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.79-4.08(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{OH}), 4.42-4.52(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{OAr}), 5.64-5.83$ ($\mathrm{m}, 2 \mathrm{H}$, olefinic protons).

Syn/anti stereoselectivity was more accurately measured by HPLC analysis on a Daicel Chiralcel ${ }^{\circledR}$ OD-H column, mobile phase: hexane/isopropanol 96/4, retention times (min): 32.4, 45.2 min (racemate of the anti-isomer), 28.7, 36.7 (racemate of the syn-isomer).

syn-2-Phenoxy-3-cyclohexen-1-ol (3).

Using the typical procedure described above, the product was isolated in 65% yield after column chromatography eluting with hexanes/AcOEt 7:3 as a liquid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.72-2.12(\mathrm{~m}, 4 \mathrm{H}), 4.02-4.18(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{OH}), 4.74-4.81$
(m, 1H, -CH-O-Ph), 5.70-6.05 (m, 2H), 6.70-6.96 (m, 3H), 7.15-7.24 (m, 2H).
\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.75,27.0,68.1,73.8,116.8,121.0,122.1,124.1,130.3$, 133.3, 158.2.

ESIMS (pos.): $m / z 191[\mathrm{M}+\mathrm{H}]$.
Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$: C, 75,76; H, 7,42. Found: C, 75.88, H, 7.34.

Reference anti-2-phenoxy-3-cyclohexen-1-ol was obtained using the $\mathrm{Rh}(\mathrm{I})$ catalyzed anti-stereoselective ring-opening procedure developed by Lautens et al.. ${ }^{3}$

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. The signals considered for the determination of the amount of the anti-isomer vs the synisomer 3 were: ${ }^{1} \mathrm{H}$ NMR $\delta 3.95-4.03(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\delta 79.4$ (C-O$\mathrm{Ph})$ and $71.2(C-\mathrm{OH})$.

syn-2-(2-Hydroxyphenoxy)-3-cyclohepten-1-ol (4)

Using the typical procedure described above, the product was isolated in 52% yield in mixture with the anti-stereoisomer after column chromatography eluting with hexane/AcOEt 7:3. Further chromatographic purification on preparative TLC gave the pure synisomer 4 (38% yield), as a liquid. $\mathrm{R}_{\mathrm{f}}=0.32$ ($39 \% \mathrm{AcOEt}$ in hexanes).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.50-2.40(\mathrm{~m}, 6 \mathrm{H}), 4.19(\mathrm{br} \mathrm{d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.50-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.15(\mathrm{~m}, 1 \mathrm{H}), 6.70-7.00(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.2,28.4,34.4,70.2,80.9,114.7,115.8,119.7,122.4$, 129.3, 134.1, 144.5, 147.3.

MS 202(13), 187(3), 174(5), 141(2), 121(5), 110(100), 82(32), 67(28), 53(29), 39(69).

Reference anti-2-(2-hydroxyphenoxy)-3-cyclohepten-1-ol was obtained in the following way: to a stirred solution of 1,2-epoxy-3-cycloheptene ($110 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in $\mathrm{EtOH}(2.0 \mathrm{~mL})$, catechol ($220 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{NaH}(40 \mathrm{mg}, 1.66$ $\mathrm{mmol})$ were added. After a reflux of 18 h the pH of the solution was adjusted to ca. 3 by addition of diluted HCl and then extracted several times with $\mathrm{Et}_{2} \mathrm{O}$. The

[^1]\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
evaporation of the washed (brine) and dried $\left(\mathrm{MgSO}_{4}\right)$ organic solution afforded a crude reaction mixture (150 mg) which was not further purified.

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Signals of the anti-isomer considered for integration were: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 4.52-4.68 (m, $1 \mathrm{H},-\mathrm{C} H-\mathrm{OAr}), 3.81(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=3.9,9.6 \mathrm{~Hz},-\mathrm{CH}-\mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.5$, 28.5, 36.9, 72.2, 84.2.

(2R)-2-(2-Hydroxyphenoxy)-2-phenylethanol (5).

Using the typical procedure described above using R-styrene oxide, the product was isolated in 75% yield after column chromatography eluting with hexanes/AcOEt 6:4, as a liquid.
${ }^{1} \mathrm{H}$ NMR $\delta 3.78-4.06(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.56-6.64 (m, 2H), 6.75-6.96 (m, 2H), 7.23-7.38 (m, 5H).
${ }^{13} \mathrm{C}$ NMR $\delta 67.0,82.8,115.8$ (2C), 119.9, 122.6, 126.3 (2C), 128.3, 128.7 (2C), 137.2, 145.3, 146.7.
$\mathrm{MS}\left(\mathrm{EI}^{+}\right) \mathrm{m} / \mathrm{z}=230\left(\mathrm{M}^{+}, 6\right), 212(3), 179(1), 149(11), 121(33), 120(35)$, 110.0(100), 103(27), 91(20), 82.9(15), 77.0(10), 65.0(5).

HRMS(EI ${ }^{+}$) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}: 230.09428$, found: 230.09494.

The reference reaction proceeding with a complete anti-stereoselectivity (net inversion of configuration at the benzylic stereocenter) was prepared as the following: R-styrene oxide ($60 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added to a stirred solution containing catechol ($110 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{NaH}(13 \mathrm{mg}$, ca. 0.5 mmol$)$. After 24 h at $95^{\circ} \mathrm{C}$ the cold reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and washed with brine several times. After evaporation of the dried organic solution the crude reaction mixture was subjected to HPLC analysis and compared with the reaction obtained with the use of catechol butyl borate (1b), which gives mainly retention of configuration. HPLC analysis performed on a Daicel Chiralcel ${ }^{\circledR}$ OD-H column, mobile phase: hexane/isopropanol 90/10, retention times (min): 15.5 (R , major stereoisomer), isomer 21.1 (S , minor stereoisomer).

(1R*, 2R*)-2-(2-Hydroxyphenoxy)-1,2-diphenyl-1ethanol (6).

Stilbene oxide ($196 \mathrm{mg}, 1.0 \mathrm{mmol}$) was treated dropwise at rt with catechol butyl borate $\mathbf{1 b}$ ($384 \mathrm{mg}, 2.0 \mathrm{mmol}$) under a vigorous stirring. The initial sospension became a light yellow solution and was treated after 4 h (ca. 85% conversion) with 2.0 mL of 5% HCl . Extraction with $\mathrm{Et}_{2} \mathrm{O}$ followed by evaporation of the washed organic solution (brine) afforded a crude product (350 mg) which was subjected to flash chromatography eluting with hexanes/AcOEt 8:2 to give 190 mg (62% yield) of compound 6 , as a solid. M.p. $=111-114^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.96(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.04(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.62-7.30(\mathrm{~m}$, $14 \mathrm{H})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 79.14,88.24,116.7,117.9,120.4,123.7,127.8,127.9,128.6$, 128.7, 138.0, 139.6, 146.2, 148.0 .

ESIMS (neg.): m/z 305 [M-H].

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR. The signal of the antiisomer considered for integration was: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.16(\mathrm{~d}, 1 \mathrm{H},-\mathrm{CH}-$ OAr).

Reference ($\mathbf{1} \boldsymbol{R}^{*}, 2 S^{*}$)-2-(2-hydroxyphenoxy)-1,2-diphenyl-1-ethanol (i.e. the anti isomer) was obtained using a described procedure. ${ }^{4}$

($2 S^{*}, 3 R^{*}$)-Methyl
3-(2-methylphenyl)-3-(2-hydroxyphenoxy)-2-hydroxy-propanoate (7).
Using the typical procedure described above, the product was isolated in 82% yield after column chromatography eluting with hexanes/AcOEt 7:3, as a white solid. M.p=148- $151{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (MeOD) $\delta 7.32-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.66-6.82(\mathrm{~m}, 2 \mathrm{H})$, 6.59-6.42 (m, 2H), $5.87(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, 2.45 ($\mathrm{s}, 3 \mathrm{H}$).

[^2]\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
${ }^{13} \mathrm{C}$ NMR (MeOD) $\delta 173.5,147.8,145.9,135.9,135.7,131.5,129.0,128.5$, 127.0, 122.9, 120.5, 116.7, 114.6, 78.9, 74.2, 52.8, 19.1.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 67,54; H, 6,00; Found: C, 68.18, H, 6.05.

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR. Signals of the anti-isomer considered for integration were at $5.65 \mathrm{ppm}(\mathrm{d}, 1 \mathrm{H}, J=4.3 \mathrm{~Hz},-\mathrm{CHO}-\mathrm{Ar})$ and at 3.88 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$).

Demonstration of the relative stereochemistry of compound 7 was effected in two ways :

1) Conversion into $\left(\mathbf{2} \boldsymbol{R}^{*}, \quad \mathbf{3} \boldsymbol{R}^{*}\right.$)-methyl $\mathbf{3 - (2 - m e t h y l p h e n y l)}$)-3-(2-hydroxyphenoxy)-2-chloro-propanoate by a reaction proceeding with complete inversion of configuration. Following a previously described procedure ${ }^{5}$, a solution of compound $7(70 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.2$ $\mathrm{mL})$ and $\mathrm{CCl}_{4}(0.5 \mathrm{~mL})$ was treated with $\mathrm{PPh}_{3}(131 \mathrm{mg}, 0.50 \mathrm{mmol})$ and refluxed for 24 h . After evaporation of the solvent the crude mixture contained the title compound. Significative signals were in agreement with a previously described compound with the same stereochemistry: ${ }^{6}{ }^{1} \mathrm{H}$ NMR $\delta 5.75$ (d, 1H, $J=9.0 \mathrm{~Hz},-\mathrm{CH}-\mathrm{OAr}), 4.72$ (d, $1 \mathrm{H}, J=9.0 \mathrm{~Hz},-\mathrm{CH}-\mathrm{Cl})$.
2) Conversion into the corresponding acetate ($2 S^{*}, 3 \mathbf{R}^{*}$)-methyl 3-(2-methylphenyl)-3-(2-acetoxyphenoxy)-2-acetoxy-propanoate (7-Ac) and observation of J values, which were in agreement with closely related compounds. ${ }^{1}{ }^{1} \mathrm{H}$ NMR δ 7.06-7.42 (m, 4H), 6.80-7.00 (m, 3H), $6.40(\mathrm{~d}$, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.79(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}), 5.43$ (d, $1 \mathrm{H}, J=3.0 \mathrm{~Hz}$), 3.69 (s, $3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.65$, 21.07, 21.30, 53.37, 73.48, 78.33, 114.89, 122.11, 124.11, 124.39, 126.96, $127.22,128.15,129.12,131.31,133.83,136.66,150.47,168.05,170.65$.

[^3]
($1 R^{*}, 2 S^{*}$)-1-Phenoxy-indan-2-ol (8).
Using the typical procedure described above (reaction carried out in DMF), the product was isolated in 70% yield after column chromatography eluting with hexane/AcOEt 7:3, as a white solid. M.p. $97-98^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR δ 7.04-7.41 (m, 9H), $5.62(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}), 4.82-4.85(\mathrm{~m}, 1 \mathrm{H}), \mathbf{3 . 0 7 -}$ 3.28 ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\delta 141.30,139.91,130.35,129.80,127.58,126.13,122.70,117.12$, 82.79, 73.64, 39.57.

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR upon observation and integration of the signals corresponding to the methylene protons for each compound (indicated in bold in both spectra). The reference new ($\mathbf{1 R}^{*}, \mathbf{2} \boldsymbol{R}^{\boldsymbol{*}}$)-1-phenoxy-indan-2-ol (i.e. the anti-isomer) was prepared by the following procedure. A solution of indene oxide ($66 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (3.0 mL) and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, was treated with phenol ($282 \mathrm{mg}, 3.0 \mathrm{mmol}$) and $\mathrm{NaOH}(120 \mathrm{mg}$, $3.0 \mathrm{mmol})$ and allowed to stir under reflux for 2 h . After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was evaporated to give a crude mixture containing the anti-isomer which was not further purified. ${ }^{1} \mathrm{H}$ NMR δ 7.04-7.40 (m, 9H), 5.59 (d, 1H, J=4.32 Hz, -CH-OPh), 4.59-4.68 (m, 1H, -CH-OH), 3.36 (dd, 1H, $\boldsymbol{J}=\mathbf{6 . 6}, \mathbf{1 6 . 1} \mathbf{H z}$), $\mathbf{2 . 8 8}(\mathbf{d}, \mathbf{1 H}, \boldsymbol{J}=\mathbf{6 . 6}, \mathbf{1 6 . 1} \mathbf{~ H z}) .{ }^{13} \mathrm{C}$ NMR $\delta 39.35,78.70,87.72$, $116.42,121.44,126.04,127.83,129.73,130.29,140.23,140.86,159.32$.

(1R*,2R*)-Cyclohexan-2-phenoxy-1carbobenzyloxyamina (9).
Using the typical procedure described above (with the use of 2.0 equiv. of borate $\mathbf{1 a}$), the product was isolated in 82% yield after column chromatography eluting with hexanes/AcOEt 7:3, as a solid. M. $\mathrm{p}=83-85^{\circ} \mathrm{C}$ (re-crystallized from hexanes).
${ }^{1} \mathrm{H}$ NMR δ 7.12-7.40 (m, 7H), 6.78-7.05 (m, 3H), $5.1(\mathrm{~s}, 2 \mathrm{H}), 3.95-4.15(\mathrm{~m}, 1 \mathrm{H})$, 3.71-3.90 (m, 1H), 1.18-1.25 (m, 8H).
${ }^{13} \mathrm{C}$ NMR $\delta 158.4,156.8,136.8,130.1,129.0,128.6,121.6,120.6,116.7,116.0$, $78.9,67.4,54.4,31.49,30.4,24.5,23.7$.

Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 73,82; H, 7,12; N, 4.30. Found: C, 73.98, H, 7.05, N, 4.32.

(1R*,2R*)-2-Cyclohexan-[4-(phenoxy)-butoxy]-1carbobenzyloxyamine (10).
Aryl borate 1a $(290 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added at rt to a solution of N-Cbz aziridine derived from cyclohexene ($115 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (0.7 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 4 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with brine $(3.0 \mathrm{ml})$ to give a crude product (295 mg) which was subjected to flash chromatography eluting with $20 \% \mathrm{AcOEt}$ in hexanes to give $83 \mathrm{mg}(42 \%)$ of a crude solid. M.p. $=68-71{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR δ 7.20-7.46 (m, 7H), 6.82-6.92 (m, 3H), $5.05(\mathrm{~s}, 2 \mathrm{H}), 4.78-4.81(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NH}), 3.86-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.00-3.12(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.15(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.85$ (m, 5H), 1.05-1.40 (m, 5H).
${ }^{13} \mathrm{C}$ NMR δ 158.3, 156.7, 130.1, 129.1, 128.7, 121.1, 115.1, 81.0, 68.7, 68.2, 67.2, 55.0, 32.0, 30.6, 27.4, 26.5, 24.6, 24.4.

Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{4}$: C, 72,52; H, 7,86; N, 3.52. Found: C, 72.77, H, 7.55, N, 3.32.

($1 R^{*}, 2 S^{*}$)-1-Phenoxy-2-(4-methylphenylsulfonamido)indane (11).
Aryl borate 1a ($162.4 \mathrm{mg}, 0.56 \mathrm{mmol}$) was added at rt to a solution of N -Ts aziridine derived from indene ${ }^{8}(160 \mathrm{mg}$, $0.56 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under a magnetic stirring.

The reaction was followed by TLC and quenched with 5% aqueous NaCl (2.0 $\mathrm{mL})$ after 2 h . The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with

[^4]\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
brine (2.0 ml) to give a crude product which was subjected to flash chromatography eluting with 30% AcOEt in hexanes to give 123 mg (58\%) of a solid. M. $\mathrm{p}=134-136^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.33$ ($30 \% \mathrm{AcOEt}$ in hexanes).
${ }^{1} \mathrm{H}$ NMR δ 7.65- $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.25(\mathrm{~m}, 8 \mathrm{H}), 6.63-6.94(\mathrm{~m}, 3 \mathrm{H}), 5.09$ (d, $\boldsymbol{J}=\mathbf{5 . 5} \mathbf{H z}, \mathbf{1 H}$), 4.03-4.21(m, 1H), $\mathbf{3 . 0 7}$ (d, 2H, $\boldsymbol{J}=\mathbf{7 . 3} \mathbf{~ H z}), 2.32(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\delta 160.91,143.78,139.22,130.10,129.98,129.84,127.42,127.32$, $125.89,125.56,122.38,117.06,79.59,56.65,31.11,21.95$. ESIMS (pos.): m/z $380[\mathrm{M}+\mathrm{H}]$.

The second eluting fractions of the above described flash chromatography $\left(\mathrm{R}_{\mathrm{f}}=0.15\right.$ with 30% AcOEt in hexanes) afforded pure ($1 R^{*}, \mathbf{2} S^{*}$)-2-(4-Methylphenylsulfonamido)-indan-1-ol (13), as a solid. M.p 140- $143^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR δ 7.68-7.72 (m, 2H), 7.12-7.34 (m, 7H), 5.46-5.50 (m, 1H, NH), 4.66 (d, 1H, $J=5.4 \mathrm{~Hz},-\mathrm{CH}-\mathrm{OH}), 3.86-4.01$ (m, 1H), 2.77-3.05 (m, 2H), 2.43 (s, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\delta 144.30,143.78,141.18,138.09,130.47,130.07,128.05,127.84$, 125.97, 125.71, 74.60, 57.33, 37.49, 22.26.

ESIMS (pos.): m/z 304 [M+H].

Syn/anti stereoselectivity (compound 11) was determined by ${ }^{1} \mathrm{H}$ NMR after integration of the signals indicated in bold in both spectra. The reference antiisomer, namely $\left(1 R^{*}, 2 R^{*}\right)$-1-phenoxy-2-(4-methylphenylsulfonamido)indane was prepared by the following procedure. A solution of N-Ts aziridine derived from indene ${ }^{8}$ ($40 \mathrm{mg}, 0.14 \mathrm{mmol}$) in THF (1.5 mL) and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$, was treated with phenol ($60 \mathrm{mg}, 0.64 \mathrm{mmol}$) and $\mathrm{NaOH}(25 \mathrm{mg}, 0.6 \mathrm{mmol})$ and allowed to stir under reflux for 6 h . After extraction with Et 2 O , the dried $\left(\mathrm{MgSO}_{4}\right)$ organic phase was evaporated to give a crude mixture containing the anti-isomer, which was not further purified. ${ }^{1} \mathrm{H}$ NMR $\delta{ }^{1} \mathrm{H}$ NMR $\delta 7.63$ - $7.67(\mathrm{~m}, 2 \mathrm{H}), 7.11-$ $7.25(\mathrm{~m}, 8 \mathrm{H}), 6.72-6.93(\mathrm{~m}, 3 \mathrm{H}), \mathbf{5 . 4 2}$ (d, $\mathbf{1 H}, \boldsymbol{J}=\mathbf{4 . 4} \mathbf{H z}), 5.00-5.04(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NH}), 4.00-4.10(\mathrm{~m}, 1 \mathrm{H}), \mathbf{3 . 2 7}\left(\mathbf{d d}, \mathbf{1 H}, \boldsymbol{J}_{\mathbf{1}}=\mathbf{7 . 1}, \mathbf{1 6 . 1} \mathbf{H z}\right), \mathbf{2 . 6 5}\left(\mathbf{d d}, \mathbf{1 H}, \boldsymbol{J}_{1}=\mathbf{7 . 1}\right.$, 16.1 Hz), 2.33 (s, 3H).
${ }^{13} \mathrm{C}$ NMR δ 158.71, 144.30, 140.92, 139.76, 130.44, 130.29, 130.21, 130.10, $128.09,127.85,126.03,125.91,122.15,116.43,85.92,60.28,38.22,22.25$.

($1 R^{*}, 2 R^{*}$)-1-Phenyl-1-phenoxy-2(carbobenzyloxy)propanamina (12). Aryl borate 1a ($174 \mathrm{mg}, 0.60 \mathrm{mmol}$) was added at rt to a solution of N - Cbz aziridine derived from trans- β-methyl styrene ($80.1,0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 3 h . The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with brine $(2.0 \mathrm{ml})$ to give a crude product which was subjected to semipreparative TLC eluting with 10% AcOEt in hexanes to give $43 \mathrm{mg}(40 \%)$ of a semisolid.
${ }^{1} \mathrm{H}$ NMR $\delta 7.10-7.29(\mathrm{~m}, 12 \mathrm{H}), 6.75-6.88(\mathrm{~m}, 3 \mathrm{H}), 5.12(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00$ (s, 2H), 4.08-4.28 (m, 1H), 1.24 (d, J=6.8 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR $\delta 158.3,156.2,138.5,137.0,129.8,128.9,128.5,127.1,121.6,116.2$, 81.8, 67.1, 52.2, 18.1 .

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR. The reference anti-isomer was prepared by the following procedure. A solution of Cbz -aziridine of β-methyl styrene ($53.4 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(0.6 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$, was treated with phenol ($56 \mathrm{mg}, 0.60 \mathrm{mmol}$) and $\mathrm{NaOH}(24 \mathrm{mg}, 0.6 \mathrm{mmol})$ and allowed to stir under reflux for 19 h. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the washed organic solution (brine) and dried $\left(\mathrm{MgSO}_{4}\right)$ afforded a crude reaction mixture which was not further purified. Signals of the anti-isomer considered for integration were: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.29(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz})$ and $1.09(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz})$.

Table 2. Additional results of the ring opening of epoxides and aziridines with aryl borates 1a,b. ${ }^{a}$
Entry
Solvent
Time
$(\%)^{c}$

syn-2-(2-Hydroxyphenoxy)-3-cyclopenten-1-ol (14) (Entry 1, Table 2)
Aryl borate 1b ($384 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added at rt to a solution of 1,3 -cyclopentadiene monoepoxide ($82 \mathrm{mg}, 1.0$ $\mathrm{mmol})$ in THF (1.0 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$ after 1 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with brine $(3.0 \mathrm{ml})$ to give a crude product which was subjected to flash chromatography eluting with hexanes/AcOEt 7:3, to give 84 mg of pure 14 (44\%), as an oil.
$\mathrm{R}_{\mathrm{f}}=0.19$ with $30 \% \mathrm{AcOEt}$ in hexanes.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.50-2.70(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.60(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}-\mathrm{OH}), 4.80-4.99$ (m, 1H, -CH-O-Ar), 5.89-6.11 (m, 2H), 6.65-6.94 (m, 4H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 39.6,71.8,84.1,116.5,116.7,120.6,123.3,129.2,135.5$, 146.3, 147.6.

MS $192\left(\mathrm{M}^{+}, 1\right), 174$ (4), 110 (45), 82 (26), 54 (63), 39 (100).

($1 R^{*}, 2 R^{*}$)-2-Phenoxy-1,2-diphenyl-1-ethanol (15). (Entry 2, Table 2)

Aryl borate 1a ($348 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added at rt to a solution of trans-stilbene oxide ($196.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$ after 3 h ($>95 \%$ conversion). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with brine (2.0 ml) to give a crude product which was subjected to column chromatography eluting with hexanes/AcOEt 8:2, to give 151 mg of pure $\mathbf{1 5}(52 \%)$, as a solid. M.p. $84-87^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.86(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz},-\mathrm{CHOH}), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$, -CHOPh), 6.75-7.22 (m, 15H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 79.3,86.1,116.8,122.0,127.86,128.1,128.6,128.23$, 130.1, 137.8, 139.2.

ESIMS (pos.): m/z 290 [M+H].
Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR. In this case the minor antiisomer is compound $\mathbf{1 6}$ (see below). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.16(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz})$.

($1 R^{*}, 2 S^{*}$)-2-Phenoxy-1,2-diphenyl-1-ethanol (16). ${ }^{\text {. }}$ (Entry 3, Table 2).

Aryl borate 1a ($348 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added at rt to a solution of cis-stilbene oxide ($196.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{HCl}(2.0 \mathrm{~mL})$ after 3 h ($>95 \%$ conversion). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with brine $(2.0 \mathrm{ml})$ to give a crude product which was subjected to column chromatography eluting with hexanes/AcOEt 8:2, to give 145 mg of pure $\mathbf{1 6}^{\circ}(50 \%)$.

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR. In this case the minor isomer is compound $\mathbf{1 5}$ (see above).

2-(2-Hydroxyphenoxy)-2-methyl-3-buten-1-ol (17) (Entry 4,

 Table 2)Aryl borate 1b ($384 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added at rt to a solution of isoprene monooxide ($100 \mu \mathrm{~L}$, ca. 1.0 mmol) in THF (1.0 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 3 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with brine (3.0 ml) to give a crude product which was subjected to flash chromatography eluting with hexanes/AcOEt 6:4, to give 83 mg of pure $17(44 \%)$, as an oil.
$\mathrm{R}_{\mathrm{f}}=0.45$ with $40 \% \mathrm{AcOEt}$ in hexanes.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{AB} \mathrm{q}, J=11.23,2 \mathrm{H}), 5.29(\mathrm{dd}, J=11.0$, $J=0.9,1 \mathrm{H}), 5.39$ (dd, $J=17.5,0.9,1 \mathrm{H}), 6.00(\mathrm{dd}, J=17.5, J=11.0,1 \mathrm{H}), 6.65(\mathrm{~m}$, 4H).
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.6,68.5,83.1,115.9,117.0,119.7,120.9,124.6,139.3$, 141.8, 143.8.

[^5]
($1 R^{*}, \quad 2 R^{*}$)-2-[4-(2-Hydroxyphenoxy)-butoxy]-cyclohexan-1-ol (18) (Entry 5, Table 2)

Aryl borate 1b ($384 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added at rt to a solution of cyclohexene oxide (100 mg , ca. 1.0 mmol) in THF (1.0 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 1 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with brine $(3.0 \mathrm{ml})$ to give a crude product which was subjected to flash chromatography eluting with hexanes/AcOEt 7:3, to give 154 mg of pure 18 (55\%), as an oil.
$\mathrm{R}_{\mathrm{f}}=0.25$ with $30 \% \mathrm{AcOEt}$ in hexanes.
${ }^{1} \mathrm{H}$ NMR $\delta 1.09-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.56-2.15(\mathrm{~m}, 8 \mathrm{H}), 2.89-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.56$ (m, 2H), 3.62-3.78 (m, 1H), 3.98-4.14 (m, 2H), 6.78-6.98 (m, 4H).
${ }^{13}$ C NMR $\delta 24.6,24.8,26.7,27.5,29.9,32.6,68.7,69.5,74.6,84.3,112.6,115.7$, 120.6, 122.2, 146.7 (2C).

MS 280($\left.\mathrm{M}^{+}, 7\right), 209(2), 171(56), 153(1), 123(7), 110(55), 99(14), 95(14), 81(52)$, 73(100), 55(81), 43(20), 41(34), 39(44).

($1 R^{*}, \quad 2 R^{*}$)-2-[4-(2-Hydroxyphenoxy)-butoxy]-cyclopentan-1-ol (19) (Entry 6, Table 2)

Aryl borate $\mathbf{1 b}(384 \mathrm{mg}, 2.0 \mathrm{mmol})$ was added at rt to a solution of cyclopentene oxide (90 mg , ca. 1.0 mmol)
in THF (1.0 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 1 h . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and washed with brine $(3.0 \mathrm{ml})$ to give a crude product which was subjected to flash chromatography eluting with hexanes/AcOEt 7:3, to give 160 mg of pure 19 (60\%), as an oil.
${ }^{1} \mathrm{H}$ NMR $\delta 1.35-1.98(\mathrm{~m}, 10 \mathrm{H}), 3.52(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 3.59-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{t}$, $2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 4.05-4.15(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.90(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.30(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\delta 21.1,26.8,27.2,30.0,32.6,68.2,69.7,77.9,115.1,121.1,130.0$, 159.6.

ESIMS (pos.): m/z $289\left[\mathrm{M}+\mathrm{Na}^{+}\right]$.

($2 S^{*}, \quad 3 R^{*}$)-Methyl 3-(2-methylphenyl)-3-phenoxy-2-hydroxy-propanoate (20). (Entry 7, Table 2)

Aryl borate 1a ($348 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added at rt to a solution of methyl 3-(2-methylphenyl)-2,3-epoxy-propanoate ($168 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (1.0 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 3 h ($>95 \%$ conversion). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and washed with brine (2.0 ml) to give a crude product (407 mg) which was subjected to column chromatography eluting with hexanes/AcOEt 7:3, to give 145 mg of pure $\mathbf{2 0}$ (60\%), as a white solid. M.p. $=115-117{ }^{\circ} \mathrm{C}$.
$\mathrm{R}_{\mathrm{f}}=0.30$ with $30 \% \mathrm{AcOEt}$ in hexanes.
${ }^{1} \mathrm{H}$ NMR $\delta 2.38$ ($\mathrm{s}, 3 \mathrm{H}$), 3.13 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{OH}$), 3.67 (s, 3H), 4.35 (dd, $J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHOH}), 5.63(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{CHOPh}), 6.63-6.82(\mathrm{~m}, 3 \mathrm{H})$, 7.03-7.11 (m, 6H), 7.32-7.37 (m, 1H).
${ }^{13} \mathrm{C}$ NMR $\delta 19.7,53.4,73.6,78.1,116.3,122.0,126.89,128.1,128.7,130.2$, 131.2, 134.5, 135.1, 158.0, 173.0.

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR as reported before for compound 7 (vide supra).

($2 S^{*}, ~ 3 R^{*}$)-Methyl 3-(4-methoxyphenyl)-3-phenoxy-2-hydroxy-propanoate (21). (Entry 8, Table 2)

Aryl borate 1a ($87 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added at rt to a solution of methyl 3-(4-methoxyphenyl)-2,3-epoxypropanoate ($55 \mathrm{mg}, 0.3 \mathrm{mmol}$) in DMF/THF ($1: 1$) (0.5 mL) under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous NaCl $(1.0 \mathrm{~mL})$ after $2 \mathrm{~h}\left(>95 \%\right.$ conversion). The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 $\mathrm{mL})$ and washed with brine (2.0 ml) to give a crude product which was subjected to semipreparative TLC, eluting with hexanes/AcOEt 7:3, to give pure 21.
${ }^{1} \mathrm{H}$ NMR $\delta 3.02-3.18(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OH}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.40-4.48(\mathrm{~m}, 1 \mathrm{H},-$ $\mathrm{CHOH}), 5.45$ (d, J=2.7 Hz, 1H, -CHOPh), 6.75-6.95 (m, 5H), 7.18-7.38 (m, 4H). ${ }^{13} \mathrm{C}$ NMR $\delta 53.4,55.9,75.7,81.0,114.8,116.8,122.1,128.7,128.9,130.0,158.2$, 160.2, 172.9 .

Syn/anti stereoselectivity was determined by ${ }^{1} \mathrm{H}$ NMR as reported before for compound 7 (vide supra).

($1 R^{*}$,
$2 S^{*}$)-1-(2-Hydroxyphenoxy)-2-(4methylphenylsulfonamido)indano (22).

Aryl borate 1b ($115.2 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added at rt to a solution of N-Ts aziridine derived from indene $(85.5 \mathrm{mg}, 0.30$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ under a magnetic stirring. The reaction was followed by TLC and quenched with 5% aqueous $\mathrm{NaCl}(2.0 \mathrm{~mL})$ after 1.5 h . The usual work-up afforded a crude product which was subjected to flash chromatography to give 40 mg of compound 22 (ca. 30% yield), contaminated by some amounts of the corresponding aminoalcohol.
${ }^{1} \mathrm{H}$ NMR $\delta 7.73-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.61-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\delta 147.7,144.3,141.4,139.1,137.7,130.5,130.4,127.6,126.3,125.8$, $124.0,121.6,120.6,117.4,116.5,116.0,82.0,56.8,37.8,22.2$.

[^0]: ${ }^{1}$ C. A. Brown, S. Krishnamurthy, J. Org. Chem. 1978, 43, 2731.
 ${ }^{2}$ W. Gerrard, M. F. Lappert, B. A. Mountfield J. Chem. Soc. 1959, 1529.

[^1]: ${ }^{3}$ K. Fagnou, M. Lautens Org. Lett. 2000, 2, 2319.

[^2]: ${ }^{4}$ S. Kim, J. W. Wu, H. Y. Chen, F. DiNinno, Org. Lett. 2003, 5, 685.

[^3]: ${ }^{5}$ C. N. Barry, S. A. Evans Jr. J. Org. Chem. 1981, 46, 3361.
 ${ }^{6}$ M. C. Cabaleiro, R. O. Garay, J. Chem. Soc. Perkin Trans. II 1987, 1473.
 ${ }^{7}$ S. B. Desai, N. P. Argade, K. N. Ganesh, J. Org. Chem. 1996, 61, 6730.

[^4]: ${ }^{8}$ T. P. Seden, R. W. Turner, J. Chem. Soc. (C), 1968, 876.

[^5]: ${ }^{9}$ H. Brunner, U. Obermann, P. Winner, Organometallics, 1989, 8, 821.

