Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Electronic Supplementary Information (ESI)

Preparation of 3-PPD. 3-Phenoxypropyl-1,4-dioxanium hexafluoroantimonate (3-PPD) were synthesized under argon in the glove box by reaction of silver hexafluoroantimonate $(0.373 \mathrm{~g}, 1.085$ mmol) with 3-PPBr $(0.212 \mathrm{~g}, 0.987 \mathrm{mmol})$ and 60 mL of 1,4 -dioxane used as solvent. AgBr precipitated immediately. Because 1,4-dioxanium salts cannot be prepared under rigorous exclusion of moisture, 2,6-di-t-butyl-pyridine $(0.208 \mathrm{~g}, 1.085 \mathrm{mmol})$ was used as a non-nucleophilic proton trap in order to neutralize the acid produced during the reaction between cationic species and the trace of molecule of water. The solution was stirred for at least 3 hours. ${ }^{7}$

Polymerization procedure. Because the ring opening reaction of oxetane is an exothermic process $\left(\Delta \mathrm{H}^{\circ}=80.8 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(19.3 \mathrm{kcal} . \mathrm{mol}^{-1}\right)\right.$ at $-9{ }^{\circ} \mathrm{C}$ in methyl chloride $),{ }^{5}$ it was possible to monitor the reaction calorimetrically. A modification of the technique of Biddulph and Plesch was used. ${ }^{4}$ In a typical experiment, 25 ml of oxetane in 1,4-dioxane were thermostatted at $35^{\circ} \mathrm{C}$ under argon. The water from the thermostat bath at $35^{\circ} \mathrm{C}$ was continually passed through the outer double jacket. When the system was balanced to $35^{\circ} \mathrm{C}, 1.9 \mathrm{ml}$ of catalyst was injected into the calorimeter by means of a bleed valve system. ${ }^{4}$ Samples of the polymerization solution were taken using an anaerobic sampling technique and then quenched by a solution of $10^{-2} \mathrm{M}$ of sodium hydroxide in water. After addition of 30 ml of dichloromethane, the quenched reaction mixture was sequentially washed with water to neutralize the pH and to remove the initiator residues and salts. The dichloromethane sample containing the polymer was then dried over MgSO_{4}. The dried polymer was filtered off and the filtrate washed with dry dichloromethane. The polymer was recovered from the organic layer by removal of the solvent to constant weight. Yield $=1.5 \mathrm{~g}$

Molecular structure by NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC 300, and were measured in CDCl_{3} solution at room temperature. For ${ }^{13} \mathrm{C}$ NMR analysis the P.E.N.D.A.N.T pulse technique was used, which ensures methyl and methine carbons appear as positive peaks and methylene and quaternary carbon atoms as negative peaks.

Fig. S1 ${ }^{13} \mathrm{C}$ NMR spectrum of poly(oxetane-co-(1,4-dioxane)) obtained in 1,4-dioxane at $35^{\circ} \mathrm{C}$ using 3-PPD as initiator.

Supplementary Material for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Fig. S2 (1) and (2) represent respectively the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of poly(oxetane) obtained in dichloromethane using $\mathrm{BF}_{3}: \mathrm{MeOH}$ as initiator (c) before and (b) after extraction of low molecular weight cyclic oligomers materials (a).

Fig. S3 Masse Spectrum of low cyclic oligomers materials extracted with cyclohexane.

Supplementary Material for Chemical Communications

This journal is © The Royal Society of Chemistry 2005
Table $1{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shift $\delta(\mathrm{ppm})$ of $-\mathrm{CH}_{2}$ - group in poly(oxetane) and poly(oxetane-co-1,4dioxane).

	Structure	Peak ${ }^{\text {j }}$		Chemical shift ${ }^{\text {a }}$
			${ }^{13} \mathrm{C}$ NMR	${ }^{1} \mathrm{H}$ NMR
			$\delta(\mathrm{ppm})$	$\delta(\mathrm{ppm})$
chains	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{k}}$	(a)	67.49	t: 3.46, 3.48 and 3.50
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{k}}$	(b)	29.76	q:1.78, 1.80, 1.82, 1.84, 1.87
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{n}}$	(g)	$70.23{ }^{\text {n }}$	peaks from 3.46 to $3.6{ }^{\text {p }}$
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{n}}$	(h)	$69.85{ }^{\text {n }}$	peaks from 3.46 to $3.6{ }^{\text {p }}$
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{n}}$	(f)	$68^{\text {n }}$	peaks from 3.46 to $3.6{ }^{\text {p }}$
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{n}}$	(a)	$67.49^{\text {n }}$	peaks from 3.46 to $3.6{ }^{\text {p }}$
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{\mathrm{n}}$	(b)	$29.76{ }^{\text {n }}$	peaks from 3.46 to $3.6{ }^{\text {p }}$
Ring ${ }^{\text {m }}$	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ (small cyclic oligomers) ${ }^{\text {m }}$	(c)	66.07	t:3.56, 3.54, 3.52
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ (large cyclic oligomers) ${ }^{\mathrm{m}}$	(e)	67.08	t: from 3.434 to $3.551{ }^{\text {p }}$
		(e)	67.44	t: from 3.434 to 3.551^{p}
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ (small cyclic oligomers) ${ }^{\mathrm{m}}$	(d)	30.15	$\mathbf{q}: 1.835,1.815,1.795,1.775$
	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ (large cyclic oligomers) ${ }^{\mathrm{m}}$	(d)	29.76	q: from 1.742 to $1.87{ }^{\text {p }}$

[^0]Gel permeation chromatography (GPC) analysis. Gel permeation chromatography was performed on a Knauer instrument using a differential refractometer as detector, and two gel columns supplied by (Polymer Laboratories) used in series, a 5μ-PL gel column with an exclusion limit of $10^{3} \AA$ and a mixed B column. THF was used as solvent. The system was calibrated with polystyrene standards

Fig. S4 GPC traces of polymer obtained throughout the polymerization (a) of 1.125 M of oxetane initiated by 0.00114 M of 3-PPD in 1,4-dioxane at $35^{\circ} \mathrm{C}$, series P3, (b) and after chain expansion polymerization of polyoxetane, polymer N. P3.7, obtained by addition of monomer solution onto active polymer solution, polymer N. P3.6, almost free of monomer issue from the polymerization of 1.125 M of oxetane by 0.002 M of 3-PPD in 1,4-dioxane at $35^{\circ} \mathrm{C}$.

Table 2 Results of the polymerization of 1.125 M of oxetane by 0.00114 M of 3-PPD in 1,4-dioxane at $35^{\circ} \mathrm{C}$.

$\begin{aligned} & \text { Polymer } \\ & \text { No } \end{aligned}$	P ${ }^{\text {a }}$ \%	$\underset{\substack{13 \\ \mathrm{~F}_{1,4-\mathrm{D}} \mathrm{CNR} \\ \mathrm{o}}}{ }$	Time Min	Conversion	$M_{\mathrm{n} \text { th. }}{ }^{\text {d, }}{ }^{\text {e }}$ g. mol^{-1}	$M_{\mathrm{nGPC}}{ }^{\text {f }}$ g. mol^{-1}	PDI ${ }^{\text {f }}$
P3.1	20.7	0	16	$20.7{ }^{\text {a }}$	$11,850{ }^{\text {d }}$	31,920	1.22
P3.2	37	0	34	$37^{\text {a }}$	21,190 ${ }^{\text {d }}$	51,700	1.18
P3.3	52.5	0	68	$52.5{ }^{\text {a }}$	$30,050{ }^{\text {d }}$	79,000	1.22
P3.4	73.45	0.4	145	$73{ }^{\text {c }}$	$41,840{ }^{\text {e }}$	98,000	1.26
P3.5	84.15	0.9	240	$83^{\text {c }}$	47,570 ${ }^{\text {e }}$	120,610	1.23

${ }^{\text {a }}$ Evaluation by gravimetric measurement. $\mathrm{P}=\left(\mathrm{Wgt}_{\text {Polymer }} / \mathrm{Wgt}_{\text {Oxetane }}\right) \times 100$. Error $\pm 2 \%$
${ }^{\mathrm{b}}$ Composition of the copolymer on the basis of ${ }^{13} \mathrm{C}$ NMR data. $\mathrm{f}_{1,4 \mathrm{D}}=\mathrm{S} /(\mathrm{S}+\mathrm{R}) \mathrm{x}\left(100-\mathrm{f}_{1,4-\mathrm{D}}\right)$ with $\mathrm{S}=\left(\left(\mathrm{I}_{70.23-69.85}\right) / 4+\mathrm{I}_{68} / 2\right)$ and $\mathrm{R}=\left(\left(\mathrm{I}_{67.49} / 2+\mathrm{I}_{29.76}\right) / 2\right)$. See Table for ${ }^{13} \mathrm{C}$ NMR data.
${ }^{c}$ Conversion $=\operatorname{Px}\left(100-\mathrm{g}_{1,4-\mathrm{D}}\right) / 100$ with $\mathrm{g}_{1,4-\mathrm{D}}=\left(\mathrm{f}_{1,4-\mathrm{D}} \times M_{1,4-\mathrm{D}}\right) /\left(\mathrm{f}_{1,4-\mathrm{D}} \times M_{1,4-\mathrm{D}}+\left(100-\mathrm{f}_{1,4-\mathrm{D}}\right) \times M_{0 \text { xetane }}\right) \times 100$.
${ }^{\mathrm{d}} M_{\text {nth. }}$ Pi.j. $=\left(\mathrm{n}_{\text {Oxetane }} / \mathrm{n}_{\text {Inititator }}\right) \times M_{\text {Oxetane }} \mathrm{x}$ conversion ${ }_{j}$
${ }^{\mathrm{e}} M_{\mathrm{n} \text { th. }} \mathrm{P}_{\mathrm{i} . \mathrm{j}}=\left(\mathrm{n}_{\text {Oxetane }} / \mathrm{n}_{\text {ninitatar }}\right) \times\left(M_{\mathrm{Ox}}+M_{1,4-\mathrm{D}} \mathrm{X} \mathrm{f}_{1,4-\mathrm{D}}\right) \mathrm{x}$ conversion ${ }_{j}$
${ }^{\mathrm{f}}$ Determined by SEC calibrated with M_{n} values obtain from PS standard.

Table 3 Results of the addition of monomer solution on active polymer solution.

Polymer No.	$[\mathrm{II}]_{0}$	$[\mathrm{Ox}]_{0}$	$\mathrm{f}_{1,4-\mathrm{D}}{ }^{\mathrm{b}}$ CNMR	Conversion	$M_{\mathrm{n} \text { th. }}{ }^{\mathrm{e}}$	$M_{\mathrm{n}(\mathrm{GPC})}{ }^{\mathrm{f}}$	PDI $^{\mathrm{f}}$
	mol.L L^{-1}	mol.L ${ }^{-1}$	$\%$	$\%$	g.mol ${ }^{-1}$	g.mol ${ }^{-1}$	
P3.6	0.002	1.125	1.2	98^{c}	$31,845^{\mathrm{h}}$	79,500	1.24
P3.7	0.00187^{g}	1.11^{g}	1	96^{c}	$67,115^{\mathrm{h}}$	160,100	1.2

bce f Refer to Table 1
${ }^{\mathrm{g}}$ Initial concentration of oxetane and initiator calculated after addition of monomer solution.

[^0]: ${ }^{\text {a }} \mathrm{CDCl}_{3}$ was used as solvent.
 ${ }^{\mathrm{j}}$ symbols associated with the chemical shift in Fig. S1 and S2.
 ${ }^{\mathrm{k}}$ chemical shift obtained from NMR spectra of linear polymer free of cyclic oligomers. Fig. 2, spectra 1c and 2c.
 ${ }^{m}$ chemical shift obtained from NMR spectra of isolated cyclic oligomers. Fig. 2, spectra 1a and 2a.
 ${ }^{\mathrm{n}}$ chemical shift obtained from ${ }^{13} \mathrm{C}$ NMR spectra of the sample P3.5. Fig. 2, spectra 1a and 2a.
 ${ }^{\mathrm{p}}$ Peaks overlap

