Supporting Information

Cuprophilic and \square-Stacking Interactions in the Formation of Supramolecular Stacks from Dicoordinate Organocopper Complexes

Anand Sundararaman, ${ }^{a}$ Lev N. Zakharov, ${ }^{b}$ Arnold L. Rheingold ${ }^{b}$ and Frieder Jäkle ${ }^{a}$ *

Materials and General Methods. Reactions and manipulations were carried out under an atmosphere of prepurified nitrogen using either Schlenk techniques or an inert-atmosphere glove box (Innovative Technologies). Ether solvents were distilled from $\mathrm{Na} /$ benzophenone prior to use. Hydrocarbon and chlorinated solvents were purified using a solvent purification system (Innovative Technologies; alumina / copper columns for hydrocarbon solvents), and the chlorinated solvents were subsequently distilled from CaH_{2} and degassed via several freeze pump thaw cycles.
$399.95 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $376.2 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Varian VXR-S and $499.91 \mathrm{MHz}{ }^{1} \mathrm{H}, 125.68 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR, and $470.2 \mathrm{MHz}{ }^{19} \mathrm{~F}$ NMR spectra were obtained on a Varian INOVA NMR spectrometer equipped with a 5 mm dual broadband gradient probe (Nalorac, Varian Inc., Martinez, CA). All NMR data were recorded at ambient temperature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were referenced internally to the solvent peaks and ${ }^{19} \mathrm{~F}$ NMR spectra were referenced externally to $\square, \square^{\prime}, \square^{\prime \prime}$-trifluorotoluene (0.05% in $\mathrm{C}_{6} \mathrm{D}_{6}$; $\square=-63.73$).

Elemental analyses were performed by Quantitative Technologies Inc., Whitehouse, NJ. Melting points and decomposition temperature were determined in sealed capillary tubes and are not corrected. The solution UV-visible measurement was performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7.2310^{-5} \mathrm{M}\right)$ using a Varian Cary 500 scan UV-Vis-NIR spectrophotometer with a 1 cm quartz cuvette. The solid state luminescence data were measured at room temperature on a Varian Cary Eclipse Fluorescence spectrophotometer. The emission spectrum was obtained in phosphorescence mode via excitation at 330 nm (600 V ; excitation slit: 10 nm ; emission slit: 20 nm) and recorded over a range from 350800 nm with a decay time of 0.002 s , a delay time of 0.100 ms , and a gate time of 1.00 ms . Data intervals were at 1.00 nm with averaging times of 0.100 s . Similar parameters were use for the excitation spectrum, which was recorded at the emission wavelength of 460 nm .

Synthesis of $\mathbf{C}_{6} \mathbf{F}_{5} \mathbf{C u}(\mathbf{p y})(2)$. Neat pyridine ($80 \square \mathrm{~L}, 1.0 \mathrm{mmol}$) was added dropwise to a solution of $\left[\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Cu}\right]_{4}(277 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at RT. Upon addition of pyridine an intense yellow color developed which gradually disappeared to yield a colorless solution. Crystallization at $-38^{\circ} \mathrm{C}$ gave pale yellow crystals of 2. Yield: $0.25 \mathrm{~g}(81 \%)$. For 2: $\mathrm{T}_{\mathrm{m}}: 135-138{ }^{\circ} \mathrm{C}$, $\mathrm{T}_{\text {dec }}: 149-151^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): $\square=7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Py}-\mathrm{H} 2,6), 6.63(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Py}-\mathrm{H} 4), 6.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Py}-\mathrm{H} 3,5) ;{ }^{19} \mathrm{~F}$ NMR ($470.2 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}$): $\square=-112.2(\mathrm{~m}, 2$ F , ortho-F), $-160.7\left(\mathrm{t}, J(\mathrm{~F}, \mathrm{~F})=20 \mathrm{~Hz}, 1 \mathrm{~F}\right.$, para-F), $-163.6\left(\mathrm{~m}, 2 \mathrm{~F}\right.$, meta-F); ${ }^{13} \mathrm{C}$ NMR (125.7 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 20^{\circ} \mathrm{C}\right): \square=150.9\left(\mathrm{dd}, J\left({ }^{19} \mathrm{~F}, \mathrm{C}\right)=222 \mathrm{~Hz} / 28 \mathrm{~Hz}\right.$, Pf-C2,6), 149.5 (Py-C2,6), 139.6 $\left(\mathrm{dm}, J\left({ }^{19} \mathrm{~F}, \mathrm{C}\right)=\right.$ n.r., Pf-C4), $138.9(\mathrm{Py}-\mathrm{C} 4), 137.4\left(\mathrm{dm}, J\left({ }^{19} \mathrm{~F}, \mathrm{C}\right)=252 \mathrm{~Hz}, \mathrm{Pf}-\mathrm{C} 3,5\right), 125.1$ (Py$\mathrm{C} 3,5), 123.9\left(\mathrm{t}, J\left({ }^{19} \mathrm{~F}, \mathrm{C}\right)=71 \mathrm{~Hz}, \mathrm{Pf}-\mathrm{C} 1\right)$.

Synthesis of $\left[\mathbf{C}_{6} \mathbf{F}_{5} \mathbf{C u}\right]_{\mathbf{2}}\left(\mathbf{4}, \mathbf{4}^{\prime}\right.$-bipy) (3). A solution of $4,4^{\prime}$-bipyridine ($78 \mathrm{mg}, 0.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was carefully layered onto a solution of $\left[\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Cu}\right]_{4}(277 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ at RT. Upon diffusion of the two solutions over a period of 24 h pale yellow crystals formed, which were collected on a frit. The crystalline product $\mathbf{3}$ was washed with toluene
and a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried under high vacuum. Yield: 0.27 g (87\%). For 3: ${ }^{1} \mathrm{H}$ NMR (400 MHz , ortho $-\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{D}_{4}, 20^{\circ} \mathrm{C}$): $\square 8.44$ (br. d, 4 H , bipy-H2,6), 7.49 (br. d, 4 H , bipy-H3,5); ${ }^{19} \mathrm{~F}$ NMR (376.2 MHz , ortho- $\mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{D}_{4}, 20^{\circ} \mathrm{C}$): $\square-109.2(\mathrm{~m}, 4 \mathrm{~F}$, ortho-F), $-158.3(\mathrm{t}, J(\mathrm{~F}, \mathrm{~F})=20 \mathrm{~Hz}$, 2 F , para-F), -161.0 (m, 4 F , meta-F); for $\mathrm{C}_{22} \mathrm{H}_{8} \mathrm{Cu}_{2} \mathrm{~F}_{10} \mathrm{~N}_{2}$ (617.39) calcd C 42.80, H 1.31, N 4.53; found $\mathrm{C} 42.14, \mathrm{H} 1.01, \mathrm{~N} 4.41 \%$. Preparation of $\mathbf{3}$ via slow diffusion of dichloromethane solutions of $\mathbf{1}$ and 4,4 '-bipyridine gave single crystals with a number of different morphologies. The crystal mixture consisted of colorless plates, rods, flakes with rounded edges, and conglomerate crystals in a rosette pattern. Only the plates and rods yielded data suitable for single crystal structure determination and proved to be polymorphs of the same compound, the dinuclear species $\left[\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Cu}\right]_{2}\left(4,4\right.$ '-bipy) (3). The molecular structures that correspond to the plates (3- $\square ; T_{\text {dec }}=140-$ $145{ }^{\circ} \mathrm{C}$) and rod-like crystals ($3-\square ; T_{\text {dec }}=130-135^{\circ} \mathrm{C}$) are displayed in Fig. 2 and Fig. 3 in the manuscript.

X-ray Crystal Structure Analyses

For 2: $\mathrm{C}_{1} \mathrm{H}_{5} \mathrm{CuF}_{5} \mathrm{~N}, M_{r}=309.70$, orthorombic, space group $P_{b c m}, a=9.8916(10) \AA, b=$ $18.9476(19) \AA, c=5.7846(6) \AA, \square=\square=\square=90^{\circ}, V=1084.2(2) \AA^{3}, Z=4, \square_{\text {calcd }}=1.897 \mathrm{~g} \mathrm{~cm}^{-3}$, $\square(\mathrm{MoK} \square)=0.71073 \AA, T=100(2) \mathrm{K}$, crystal dimensions $0.40 \times 0.40 \times 0.30 \mathrm{~mm}^{3}, \square(\mathrm{MoK} \square)=$ $2.061 \mathrm{~mm}^{-1}$, \square range from 2.06 to $27.47^{\circ}, 8592$ measured reflections, 1365 independent reflections $\left(R_{\text {int }}=0.0202\right)$ which were used for the refinement against F^{2}, SADABS $\left(\mathrm{T}_{\min } / T_{\max }=0.4927 / 0.5768\right)$, $R 1[I>2 \square(I)]=0.0274, w R 2[I>2 \square(I)]=0.0739$, GOF $=1.075$, No. of parameters $=109$, final difference map within 0.522 and $-0.420 \mathrm{e}^{\AA^{-3}}$.

For 3- $\square: \mathrm{C}_{22} \mathrm{H}_{8} \mathrm{Cu}_{2} \mathrm{~F}_{10} \mathrm{~N}_{2}, M_{r}=617.38$, orthorombic, space group $F_{d d d}, a=8.071(2) \AA, b=$ 11.127(3) $\AA, c=48.264(14) \AA, \square=\square=\square=90^{\circ}, V=4335(2) \AA^{3}, Z=8, \square_{\text {calcd }}=1.892 \mathrm{~g} \mathrm{~cm}^{-3}$, $\square(\mathrm{MoK} \square)=0.71073 \AA, T=219(2) \mathrm{K}$, crystal dimensions $0.15 \times 0.15 \times 0.05 \mathrm{~mm}^{3}, \square(\mathrm{MoK} \square)=$ $2.062 \mathrm{~mm}^{-1}, \square$ range from 1.69 to $28.31^{\circ}, 5700$ measured reflections, 1317 independent reflections $\left(R_{\mathrm{int}}=0.0341\right)$ which were used for the refinement against $F^{2}, \mathrm{SADABS}\left(\mathrm{T}_{\min } / T_{\max }=0.7473 / 0.9039\right)$, $R 1[I>2 \square(I)]=0.0491, w R 2[I>2 \square(I)]=0.1255$, GOF $=1.401$, No. of parameters $=85$, final difference map within 0.724 and $-0.396 \mathrm{e}^{-3}$.

For 3-प: $\mathrm{C}_{22} \mathrm{H}_{8} \mathrm{Cu}_{2} \mathrm{~F}_{10} \mathrm{~N}_{2}, M_{r}=617.38$, monoclinic, space group $P 2_{1} / n, a=9.2876(18) \AA, b=$ $5.0328(10) \AA, c=22.316(4) \AA, \square=92.567(4)^{\circ}, V=1042.1(4) \AA^{3}, Z=2, \square_{\text {calcd }}=1.968 \mathrm{~g} \mathrm{~cm}^{-3}$, $\square(\mathrm{MoK} \square)=0.71073 \AA, T=219(2) \mathrm{K}$, crystal dimensions $0.33 \times 0.06 \times 0.06 \mathrm{~mm}^{3}, \square(\mathrm{MoK} \square)=$ $2.144 \mathrm{~mm}^{-1}$, \square range from 1.83 to $28.35^{\circ}, 7363$ measured reflections, 2511 independent reflections ($R_{\text {int }}=0.0243$) which were used for the refinement against $F^{2}, \operatorname{SADABS}\left(\mathrm{~T}_{\min } / T_{\max }=0.5380 / 0.8821\right)$, $R 1[I>2 \square(I)]=0.0481, w R 2[I>2 \square(I)]=0.1020$, GOF $=1.228$, No. of parameters $=163$, final difference map within 0.432 and $-0.263 \mathrm{e}^{-3}$.

For all three structures SADABS (Sheldrick, G.M. SADABS (2.01), Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS: Madison, WI, 1998) absorption correction was used. Non-hydrogen atoms were refined with anisotropic displacement coefficients, and hydrogen atoms were treated as idealized contribution. CCDC-250638, CCDC-219364, and CCDC-219363 contain the supplementary crystallographic data for 2, 3- \square, and 3- \square, respectively. These data can be obtained online free of charge via www.ccdc.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit @ccdc.cam.ac.uk).

Fig. S1. Ortep plot for 2 at 50% probability level. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for 2: $\mathrm{Cu}(1)-$ $\mathrm{C}(1) 1.8913(17), \mathrm{Cu}(1)-\mathrm{N}(1) 1.9022(15), \mathrm{N}(1)-\mathrm{C}(7) 1.356(2), \mathrm{N}(1)-\mathrm{C}(11) 1.346(2), \mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{~A}) 2.8924(3), \mathrm{C}(1)-$ $\mathrm{Cu}(1)-\mathrm{N}(1) 178.54(6), \mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}(1) 121.11(12), \mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Cu}(1) 121.30(11), \mathrm{C}(6)-\mathrm{C}(1)-\mathrm{Cu}(1) 121.80(13)$, $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cu}(1) 124.61(14), \mathrm{C}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{~A}) 89.900(5), \mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{~A}) 90.097(5), \mathrm{Cu}(1)-\mathrm{Cu}(1 \mathrm{~A})-\mathrm{Cu}(1 \mathrm{~B})$ 179.716(15), (Py) // (Pf) 0.0.

Fig. S2. Ortep plot for $3-\square$ at 50% probability level. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $3-\square$: $\mathrm{Cu}(1)-\mathrm{C}(1) 1.880(4), \mathrm{Cu}(1)-\mathrm{N}(1) 1.902(3), \mathrm{N}(1)-\mathrm{C}(5) 1.347(3), \mathrm{C}(7)-\mathrm{C}(7 \mathrm{~A}) 1.476(7), \mathrm{C}(1)-\mathrm{Cu}(1)-\mathrm{N}(1) 180.0, \mathrm{C}(5)-$ $\mathrm{N}(1)-\mathrm{Cu}(1) 121.3(2), \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cu}(1) 123.3(2),(\mathrm{Py}) / /(\mathrm{Pf}) 3.8,(\mathrm{Py}) / /(\mathrm{PyA}) 44.3$.

Fig. S3. Ortep plot for $3-\square$ at 50% probability level. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for 3- \square : $\mathrm{Cu}(1)-\mathrm{C}(1) 1.890(2), \mathrm{Cu}(1)-\mathrm{N}(1) 1.903(2), \mathrm{N}(1)-\mathrm{C}(7) 1.324(3), \mathrm{N}(1)-\mathrm{C}(11) 1.327(3), \mathrm{C}(9)-\mathrm{C}(9 \mathrm{~A}) 1.485(4), \mathrm{C}(1)-$ $\mathrm{Cu}(1)-\mathrm{N}(1) 178.17(8), \mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}(1) 121.0(2), \mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Cu}(1) 122.4(2), \mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Cu}(1) 124.1(2)$, (Py) // (Pf) 9.5, (Рy) // (РyA) 0.0.

Fig. S4. Packing diagram for $\mathbf{2}$ viewed along the crystallographic c-axis.

