

Dibenzothiophene-*S*,*S*-dioxide – Fluorene Co-oligomers. Stable, Highly-Efficient Blue Emitters with Improved Electron Affinity

Irene I. Perepichka," Igor F. Perepichka,*bc Martin R. Bryce,*c and Lars-Olof Pålssonc

^a Department of Chemistry, Donetsk National University, Donetsk 83000, Ukraine
^b L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine, Donetsk 83114, Ukraine. E-mail: i_perepichka@yahoo.com

^c Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K. Fax: +44-191-3844737; E-mails: i.f.perepichka@durham.ac.uk; m.r.bryce@durham.ac.uk

Abstract: Incorporation of dibenzothiophene-*S*,*S*-dioxide units into conjugated fluorene oligomers changes the frontier orbital energy level and presents an effective way to increase the electron affinity of these materials, which are highly fluorescent with bright blue emission in both solution and solid state.

Figure S1. UV-Vis absorption spectra of pentafluorene FFFFF in chloroform ($\lambda_{max} = 371$ nm) and in film ($\lambda_{max} = 370$ nm).

Figure S2. UV-Vis absorption spectra of FSF in chloroform.

Figure S3. UV-Vis absorption spectra of FFSFF in chloroform.

Figure S4. UV-Vis absorption spectra of FSFSF in chloroform.

Figure S5. (A) UV-Vis absorption and photoluminescence spectra of FSF, FFSFF and FSFSF in chloroform. (B) Photoluminescence spectra of FSF, FFSFF and FSFSFF in tetrahydrofuran.

Figure S6. Evolution of the photoluminescence spectra of FFSFF films on annealing in an inert atmosphere.

Figure S7. Photoluminescence spectra of **FFSFF** in chloroform solution: (—) fresh solution, $\lambda_{PL} = 449$ nm, $\Phi_{PL} = 67$ %; (—) solution of **FFSFF** prepared by dissolution of the film, annealed at 150 °C for 3 h (see Fig. S6) and then stored at ambient temperature in air for 6 months. The spectra are corrected for differences in absorption. Analysis shows that the PL intensity of the re-dissolved film is > 95% of the fresh solution, which is within the accuracy of the experiment.

Figure S8. Cyclic voltammetry of **FFFFF** (a) and deconvoluted CV spectra (b); electrolyte 0.2 M Bu_4NPF_6 , scan rate 100 mV s⁻¹, 20 °C.

Experimental Part

General

Elemental analyses were obtained on a Carlo-Erba Strumentazione instrument. Melting points were determined in openend capillaries using a Stuart Scientific melting point apparatus SMP3 and were uncorrected. Solution ¹H NMR and ¹³C NMR spectra were recorded on Varian Unity 300, Bruker Avance 400 and Varian Inova 500 spectrometers operating at (¹H) 299.91, 400.13, 499.99 and (¹³C) 75.42, 100.62, 124.99 MHz, respectively. Chemical shifts are reported in ppm relative to TMS as internal standard. Mass spectra were obtained on a Micromass Autospec instrument operating in EI mode at 70 eV. MALDI-TOF spectra were obtained on an Applied Biosystems Voyager-DE STR operating in reflector mode.

UV-Vis absorption spectra were recorded on Perkin Elmer Lamda 19, Cary 5E and Genesis 10 spectrophotometers. Photoluminescence spectra were recorded on a Jobin Horiba Fluoromax 3, with an excitation at 390 nm, PL quantum yields (Φ_{PL}) in solution were measured using anthracene as a standard, $\Phi_{PL} = 27\%$ in ethanol solution.¹ Films of dibenzothiophene-*S*,*S*-dioxide/fluorene co-oligomers were spin-coated onto a quartz substrate from chloroform solution. Φ_{PL} of films were measured with an integrating sphere as described previously.²

Synthesis

2,7-Dibromofluorene, 2,7-dibromo-9,9-dihexylfluorene, 2-bromo-9,9-dihexylfluorene, 9,9-dihexylfluorene-2,7diboronic acid (2) and 9,9-dihexylfluorene-2-boronic acid (3) have been described in the literature. We performed scaleup syntheses of these known compounds and we present our modified procedures for these widely used intermediates in oligo/polyfluorene chemistry.

2,7-Dibromofluorene.

Fluorene (292 g, 1.76 mol) was dissolved in acetic acid (2600 cm³) at ~70 °C and H₂SO₄ (98%, 25 cm³) was added slowly to this solution. The reaction mixture was allowed to cool to ~50 °C with stirring, and a solution of bromine (150 cm³, 2.92 mol) in acetic acid (200 cm³) was added dropwise for 2–3 h, keeping the temperature at 40–55 °C to avoid crystallization of the fluorene. When ca. 1/3 - 1/2 of bromine was added, 2,7-dibromofluorene started to crystallise. Simultaneously with addition of a second half of bromine, KBrO₃ (100 g, 0.60 mol) was added in small portions (*CAUTION: add slowly, exothermic reaction!*) at 40–55 °C with vigorous stirring, which promotes the heavy precipitation of 2,7-dibromofluorene. The mixture was stirred for 3–4 h, then allowed to cool gradually to room temperature. After cooling the mixture to 10 °C, the solid was filtered off, washed with 70% AcOH (500 cm³) and water until pH 7, and dried affording the crude product as a cream-coloured solid (481 g, 85 %) of > 95% purity (by ¹H NMR). To further purify the product it was stirred in AcOH (~ 1000 cm³) at reflux (no full dissolution) for 4 h, cooled, filtered off, washed with AcOH and dried. Yield 455 g, 80%.

¹H NMR (400 MHz, CDCl₃): δ 7.66 (2H, d, J_{1-3} = 1.8 Hz, H-1,8), 7.59 (2H, d, J_{3-4} = 8.0 Hz, H-4,5), 7.50 (2H, dd, J_{3-4} = 8.0 Hz, H-4,5), 7.50 (2H, dd, J_{3-4} = 8.0 Hz, J_{1-3} = 1.8 Hz, H-3,6), 3.89 (2H, s, CH₂).

¹³C NMR (100 MHz, CDCl₃): δ 144.79, 139.69, 130.15, 128.31, 121.19, 120.94, 36.56.

2,7-Dibromo-9,9-dihexylfluorene (adapted from ref.³).

Under argon, a 3 L three-neck flask was charged with 2,7-dibromofluorene (130.0 g, 0.40 mol), 1-bromohexane (220 cm³, 1.57 mol) and dry THF (1000 cm³). After full dissolution the mixture was cooled to 0 °C and a solution of potassium *tert*-butoxide (100.6 g, 0.90 mol) in dry THF (1000 cm³) was added dropwise at 0 - +5 °C with vigorous stirring during 1.5 h. Upon adding the *tert*-butoxide solution the reaction mixture became orange (generation of fluorene anion) and then the colour changed to light pink (at the end of *tert*-butoxide addition no orange colour is produced, indicating that the alkylation reaction has been completed). The mixture was stirred at room temperature for 4 h, filtered from the KBr precipitate, and the solid was washed on the filter with DCM. The filtrate was evaporated on a rotavapor, the residue was dissolved in DCM (1500 cm³), washed with water, dried over MgSO₄, and the solvent was evaporated. Excess 1-bromohexane was removed *in vacuo* (80 °C, 1 mbar) yielding crude product (196.7 g, 99.6 %) as yellow

crystals. This was purified by column chromatography (7×17 cm column, silica gel, eluent – petrol ether, bp 40–60 °C) to afford 2,7-dibromo-9,9-dihexylfluorene (179.5 g, 91 %) as colourless plates. The material can also be additionally recrystallised from hexane or ethanol.

¹H NMR (500 MHz, CDCl₃): δ 7.51 (2H, d, J = 7.8 Hz, H-1,8), 7.45 (2H, dd, J = 1.8 Hz and 7.8 Hz, H-3,6), 7.44 (2H, d, J = 1.8 Hz, H-4,5), 1.96–1.87 (4H, m, *CH*₂C₅H₁₁), 1.16–1.08 (4H, m, *CH*₂CH₂CH₂C₃H₇), 1.08–0.98 [8H, m, (CH₂)₃*CH*₂*CH*₂CH₃], 0.78 (6H, t, J = 7.4 Hz, CH₃), 0.62–0.53 (4H, m, CH₂*CH*₂C₄H₉).

9,9-dihexylfluorene-2,7-diboronic acid (3).

To a stirred solution of 2,7-dibromo-9,9-dihexylfluorene (30.0 g, 60. 9 mmol) in dry THF (1000 cm³) under argon, a solution of BuLi in hexane (2.5 M; 54 cm³, 135 mmol) was added dropwise at -78 °C. The mixture was stirred at this temperature for 6 h to give a white suspension. Triisopropylborate (60 cm³, 258 mmol) was added quickly and the mixture was stirred overnight allowing the temperature to rise gradually to room temperature. Water (300 cm³) was added and the mixture was stirred at r.t. for 4 h. Organic solvents were removed on a rotavapor (35 °C, 40 mbar), water (1100 cm³) was added and the mixture was acidified with concentrated HCl. The product was extracted into diethyl ether (7 × 300 cm³), the organic layer was dried over MgSO₄ and solvent was removed on a rotavapor. The residue was dissolved in acetone (110 cm³) and reprecipitated into a mixture of water (130 cm³) and concentrated HCl (70 cm³) affording product **3** (24.3 g, 95 %) as a white powder. The product can be additionally purified by dissolution in acetone (100 cm³) and addition of hexane (200 cm³) to this solution.

¹H NMR (400 MHz, acetone-d₆): δ 7.99 (2H, dd, H-1,8), 7.90 (2H, dd, $J_{3-4} = 7.6$ Hz, $J_{1-3} = 1.3$ Hz, H-3,6), 7.80 (2H, dd, $J_{3-4} = 7.6$ Hz, $J_{1-4} = 0.6$ Hz, H-4,5), 7.19 [4H, s, B(OH)₂], 2.12–2.00 (4H, m, $CH_2C_5H_{11}$), 1.2–0.9 [12H, m, (CH₂)₂(CH_2)₃CH₃], 0.74 (6H, t, J = 7.2 Hz, CH₃), 0.64–0.54 (4H, m, CH₂C $_2C_4H_9$). ¹³C NMR (100 MHz, acetone-d₆): δ 150.87, 144.09, 133.87, 129.39, 119.92, 55.50, 41.09, 32.27, 30.39, 24.57, 23.16, 14.21

2-Bromo-9,9-dihexylfluorene

1-Bromohexane (230 cm³) was added to a solution of 2-bromofluorene (106 g, 0.43 mol) in dry THF (1000 cm³) under argon and cooled to 0°C. Potassium *tert*-butoxide (111 g, 0.99 mol) was dissolved in dry THF (1000 cm³) and added dropwise at -5 °C for 2 h to the above solution. The reaction was left stirring under argon at 0 °C for 3 h and then it was allowed to warm up to room temperature and stirred for another 6 h. The obtained precipitate of KBr was filtered off and washed with DCM. The combined filtrates were evaporated and chromatographed on silica, eluted with petrol ether. 1-Bromohexane was removed under high vacuum (70 °C, 0.9 mbar), followed by another purification by column chromatography on silica to afford 171 g (95%) of the title product as a light yellowish oil.

¹H NMR (400 MHz, CDCl₃): δ 7.67–7.63 (1H, m), 7.54 (1H, dd, J = 0.8 and 7.6 Hz, H-3), 7.46–7.42 (2H, m), 7.36–7.29 (3H, m), 2.00–1.86 (4H, m, $-CH_2C_5H_{11}$), 1.16–1.07 (4H, m, $CH_2CH_2CH_2C_3H_7$), 1.07–0.97 [8H, m, (CH)) CH CH CH L 1 0.76 (6H t 1 = 7.6 Hz, CH)) 0.64 0.55 (4H m CH CH CH)

(CH₂)₃CH₂CH₂CH₃], 0.76 (6H, t, J = 7.6 Hz, CH₃), 0.64–0.55 (4H, m, CH₂CH₂C₄H₉).

¹³C NMR (75 MHz, CDCl₃): δ 152.92, 150.26, 140.09, 139.98, 129.82, 127.41, 126.87, 126.61, 126.08, 122.83, 120.98, 119.70, 55.34, 40.27, 31.46, 29.63, 23.64, 22.56, 13.99.

9,9-Dihexylfluorene-2-boronic acid (2).

A 1.6 M solution of *n*-butyllithium in hexane (130 cm³, 0.208 mol) was added dropwise over 30 min to a solution of 2bromo-9,9-dihexylfluorene (65.0 g, 0.157 mol) in dry THF (2300 cm³) at -78 °C under argon and the mixture was stirred for 1 h. Then triisopropylborate (113 cm³, 0.487 mol) was added dropwise for 60 min at -78 °C and the reaction

mixture was vigorously stirred under argon at this temperature until the light pink colour of the solution disappeared (*ca*. 1.5 h), then the temperature was allowed to rise gradually to room temperature and the reaction mixture was left stirring under argon for 7 h at room temperature to give a colourless suspension. THF was removed up to *ca*. 500 cm³ and the solid was washed with water (800 cm³). 13% HCl (800 cm³) was added and the mixture was vigorously stirred for 3 h. The product was extracted into diethyl ether, washed with water, dried over MgSO₄ and purified by column chromatography on silica, eluting first with petrol ether and then with mixture of petrol ether and toluene (3:1, 1:1 v/v). Yield: 37.09 g (62 %) of a colourless solid.

¹H NMR (200 MHz, CDCl₃): δ 8.32 (1H, d, J = 7.6 Hz, H-4), 8.22 (1H, s, H-1), 7.90 (1H, d, J = 7.6 Hz, H-5), 7.86–7.77 (1H, m), 7.46–7.32 (3H, m), 2.22–1.96 (4H, m, $-CH_2C_5H_{11}$), 1.20–0.96 [12H, m, $CH_2CH_2(CH_2)_3CH_3$], 0.75 (6H, t, J = 6.4 Hz, CH₃), 0.78–0.58 (4H, m, (4H, m, CH₂CH₂C₄H₉).

¹³C NMR (75 MHz, CDCl₃) δ 151.64, 150.12, 145.57, 140.72, 134.61, 129.67, 128.94 (br.), 127.92, 126.83, 123.03, 120.40, 119.26, 55.05, 40.42, 31.53, 29.75, 23.80, 22.58, 14.01.

3,7-Dibromodibenzothiophene-S,S-dioxide (1)

Dibenzothiophene-*S*,*S*-dioxide (100.0 g, 0.46 mol) was dissolved in concentrated H_2SO_4 (3000 cm³). *N*bromosuccinimide (NBS) (82.3 g, 0.46 mol) was added to this solution in several portions and the mixture was stirred at room temperature for 1 h. Additional NBS (82.3 g, 0.46 mol) was added to the mixture, which was then vigorously stirred at room temperature for 24 h. The precipitation started in 2–3 h and a lot of white solid was formed at the end of the process. The solid was filtered off, washed with H_2SO_4 (200 cm³), then with H_2O until neutral and recrystallised from chlorobenzene to obtain 3,6-dibromodibenzothiophene-*S*,*S*-dioxide 1 as colourless needles (96 g, 56%), m.p. 317– 318 °C. Lit.⁴ m.p. 288–290 °C.

¹H NMR (300 MHz, CDCl₃): δ 7.93 (2H, d, J = 1.8 Hz, H-4,6), 7.77 (2H, dd, J = 1.8 and 8.4 Hz, H-2,8), 7.64 (2H, d, J = 8.1 Hz, H-1,9).

3,7-Bis(9,9-di-n-hexylfluorene-2-yl)dibenzothiophen-S,S-dioxide (FSF).

Under argon, to a mixture of 3,6-dibromodibenzothiophene-*S*,*S*-dioxide **1** (0.37 g, 1.00 mmol), 9,9-di-*n*-hexylfluorene-2-boronic acid **2** (0.77 g, 2.04 mmol) and dichlorobis(triphenylphosphine)palladium(II) (16 mg, 0.02 mmol), degassed 2 M potassium carbonate aqueous solution (4 cm³) and 1,4-dioxane (10 cm³) were added via a syringe. The reaction was stirred under argon with heating at 110 °C (oil bath) for 24 h with protection from the sunlight. The resulting slurry was poured into 5% NaCl-aqueous solution, the product was extracted with dichloromethane (50 cm³), the organic layer was washed with water until pH 7 and dried over anhydrous magnesium sulphate. After evaporation of the solvent, the residue was purified by column chromatography on silica gel eluting first with petroleum ether to remove by-products and then with petrol ether (PE) – dichloromethane mixture (PE:DCM, 1:1 v/v), to obtain the title product **FSF** (0.76 g, 86%) as a light yellow powder, m.p. 153 °C.

¹H NMR (500 MHz, CDCl₃): δ 8.16 (2H, d, J = 1.6 Hz, H-4,6 dibenzothiophene), 7.96 (2H, dd, J = 1.6 and 7.8 Hz, H-2,8 dibenzothiophene), 7.91 (2H, d, J = 7.8 Hz, H-1,9 dibenzothiophene), 7.81 (2H, d, J = 8.0 Hz, H-4 fluorene), 7.75 (2H, dd, J = 1.5 and 7.0 Hz, H-5 fluorene), 7.63 (2H, dd, J = 1.8 and 8.0 Hz, H-3 fluorene), 7.61 (2H, s, H-1 fluorene), 7.39–7.33 (6H, m, H-6,7,8 fluorene), 2.06–2.00 (8H, m, $CH_2C_5H_{11}$), 1.16–1.00 [24H, m, $CH_2CH_2(CH_2)_3CH_3$], 0.77 (12H, t, J = 7.3 Hz, CH₃), 0.70–0.60 (8H, m, $CH_2CH_2C_4H_9$).

¹³C NMR (100 MHz, CDCl₃): δ 151.89, 151.09, 144.16, 141.82, 140.28, 138.61, 137.44, 132.57, 129.95, 127.56, 126.92, 125.87, 122.96, 121.91, 121.24, 120.64, 120.30, 120.02, 55.34, 40.47, 31.51, 29.70, 23.79, 22.59, 14.01 m/z (ES+): 880 (M⁺, 100%). [Exact Mass (calcd):880.5253]

Anal. Calcd for C₆₂H₇₂O₂S (M.W. 881.30): C, 84.50; H, 8.23; S, 3.64. Found: C, 84.45; H, 8.21; S, 3.58

3,7-Bis(2-bromo-9,9-di-n-hexylfluorene-7-yl)dibenzothiophene-S,S-dioxide (6).

To a solution of FSF (0.50 g, 0.57 mmol) in chloroform (4.5 cm³) containing FeCl₃ (14 mg, 0.09 mmol; 0.15 equivalents) a solution of bromine (0.19 g, 1.21 mmol; 2.14 equivalents) in chloroform (1.3 cm³) was added at -5 °C (*it* is important that the reaction proceeds in the dark to avoid bromination of the aliphatic part of the molecule). The solution was allowed to warm to room temperature and stirred for 40 h. The resulting solution was washed with water and several times with a 0.3 M sodium carbonate aqueous solution. The aqueous layer was additionally extracted with chloroform and the combined organic solution was dried over anhydrous magnesium sulfate. Removing the solvent afforded crude product (0.49 g, 83%), which was recrystallised from acetone to yield compound 6 (0.32 g, 54%) as a light yellow powder, m.p. 241-242.5 °C.

¹H NMR (300 MHz, CDCl₃): δ 8.14 (2H, s.br., H-4,6 dibenzothiophene), 7.96 (2H, dd, J = 1.5 and 8.1 Hz, H-2,8 dibenzothiophene), 7.91 (2H, d, J = 8.1 Hz, H-1,9 dibenzothiophene), 7.78 (2H, d, J = 8.1 Hz, H-4 fluorene), 7.65–7.58 (6H, m), 7.51-7.48 (4H, m), 2.07–1.96 (8H, m, $CH_2C_5H_{11}$), 1.20–1.00 [24H, m, $CH_2CH_2(CH_2)_3CH_3$], 0.78 (12H, t, J = 6.9 Hz, CH₃), 0.69–0.57 (8H, m, CH₂CH₂C₄H₉).

¹³C NMR (100 MHz, CDCl₃) δ 153.31, 151.54, 143.99, 140.72, 139.32, 138.65, 137.93, 132.62, 130.17, 130.05, 126.27, 126.10, 121.99, 121.64, 121.38, 121.27, 120.69, 120.45, 55.70, 40.37, 31.50, 29.63, 23.76, 22.60, 14.01. m/z (EI): 1036 (M⁺, 45%, ⁷⁹Br, ⁷⁹Br), 1038 (M⁺, 100%, ⁷⁹Br, ⁸¹Br), 1040 (M⁺, 67%, ⁸¹Br, ⁸¹Br). [Exact Mass (calcd): 1036.34631.

Anal. Calcd for C₆₂H₇₀Br₂O₂S (M.W. 1039.09): C, 71.66; H, 6.79; Br, 15.38; S, 3.09. Found: C, 71.49; H, 6.87; Br, 15.13; S, 3.19

3-Bromo-7-(9,9-di-n-hexylfluorene-2-yl)dibenzothiophene-S,S-dioxide (4)

The flask with 3,6-dibromodibenzothiophene-S,S-dioxide 1 (11.92 g, 31.86 mmol) and 9,9-di-n-hexyl-2fluoreneboronic acid 2 (4.02 g, 10.62 mmol) was flushed with argon. Anhydrous 1,4-dioxane (350 cm³), degassed 2.3 M potassium carbonate aqueous solution (30 cm³) and dichlorobis(triphenylphosphine)palladium(II) (0.09 g, 0.13 mmol) were added. The reaction mixture was stirred under argon with heating at 100 °C (oil bath) for 27 h with protection from the sunlight. The resulting solution was concentrated and the product was extracted with dichloromethane (250 cm³), washed with water until pH 7 and dried over anhydrous magnesium sulphate. After evaporation of the solvent, the residue was purified by column chromatography on silica gel eluting first with PE to remove by-products. Further elution with a mixture of PE:DCM (1:1 v/v) yielded first compound FSF (1.64 g, 35%) and then compound 4 (3.06 g, 46%) as a yellowish powder, m.p. 177.5-178.5 °C.

Compound 4:

¹H NMR (400 MHz, CDCl₃): δ 8.10 (1H, d, J = 1.6 Hz, H-6 benzothiophene), 7.97 (1H, d, J = 1.6 Hz, H-4 benzothiophene), 7.93 (1H, dd, J = 1.6 and 8.0 Hz, H-8 benzothiophene), 7.84 (1H, d, J = 8.0 Hz, H-9 benzothiophene), 7.79 (1H, d, J = 8.0 Hz), 7.78 (1H, dd, J = 1.6 and 8.4 Hz, H-2 benzothiophene), 7.76–7.72 (1H, m), 7.70 (1H, d, J = 8.4 Hz, H-1 benzothiophene), 7.60 (1H, dd, J = 1.8 and 7.8 Hz), 7.58 (1H, m), 7.39–7.34 (3H, m), 2.06–1.99 (4H, m, $CH_2C_5H_{11}$), 1.16–0.99 [12H, m, $CH_2CH_2(CH_2)_3CH_3$], 0.76 (6H, t, J = 7.0 Hz, CH_3), 0.69–0.59 (4H, m, $CH_2CH_2C_4H_9$). ¹³C NMR (100 MHz, CDCl₃) δ 151.93, 151.08, 144.75, 141.98, 140.21, 139.36, 138.17, 137.20, 136.97, 132.67, 130.48, 129.01, 127.62, 126.94, 125.89, 125.51, 123.96, 122.97, 122.89, 121.92, 121.23, 120.65, 120.32, 120.05, 55.34, 40.43, 31.49, 29.68, 23.77, 22.57, 13.99.

m/z (EI): 626 (M⁺, 96%, ⁷⁹Br), 628 (M⁺, 100%, ⁸¹Br). [Exact Mass (calcd): 626.1854].

Anal. Calcd for C₃₇H₃₉BrO₂S (M.W. 627.67): C, 70.80; H, 6.26; Br, 12.73; S, 5.11. Found: C, 70.92; H, 6.33; Br, 12.60, S, 5.13.

In spite of the high excess of dibromide 1 over boronic acid 2 in this synthesis (1:2 = 3 mol: 1 mol), a substantial amount of **FSF** was formed in the reaction, probably due to the high reactivity of 4 compared to that for 1. When the ratio of 1:2 was increased to 1:7, this did not increase the yield of compound 4 due to the low solubility of 3,6-dibromodibenzothiophene-S,S-dioxide 1, which does not completely dissolve in the mixture.

2,7-Bis[7-(9,9-di-n-hexylfluorene-2-yl)dibenzothiophene-S,S-dioxide-3-yl]-9,9-di-n-hexylfluorene (FSFSF).

To a flask containing compound **4** (0.51 g, 0.81 mmol), 9,9-di-*n*-hexylfluorene-2,7-diboronic acid (0.14 g, 0.33 mmol) and dichlorobis(triphenylphosphine)palladium(II) (11 mg, 0.02 mmol), degassed 2 M potassium carbonate aqueous solution (1.5 cm³) and 1,4-dioxane (4 cm³) were added via syringe. The reaction mixture was stirred under argon with heating on an oil bath at 100 °C for *ca*. 40 h under protection from light. Filtration, washing with dioxane (*ca*. 1 cm³), n-hexane (*ca*. 3.5 cm³) and water (to remove inorganic salts) afforded crude product (0.42 g), which was purified by column chromatography on silica gel eluting with a mixture PE:DCM, 1:1 to afford the title product **FSFSF** (0.33 g, 72%), as a light yellow powder, m.p. > 270 °C.

¹H NMR (500 MHz, CDCl₃): δ 8.17 (4H, dd, J = 1.5 and 6.0 Hz), 8.02–7.95 (4H, m), 7.93 (2H, d, J = 8.0 Hz), 7.92 (2H, d, J = 8.0 Hz), 7.86 (2H, d, J = 8.0 Hz), 7.81 (2H, d, J = 7.5 Hz), 7.76 (2H, dd, J = 1.5 and 6.0 Hz), 7.69–7.60 (8H, m), 7.41–7.33 (6H, m), 2.16–2.09 [4H, m, $CH_2C_5H_{11}$ (central fluorene)], 2.08–2.00 [8H, m, $CH_2C_5H_{11}$ (terminal fluorenes)], 1.18–1.00 [36H, m, $CH_2CH_2(CH_2)_3CH_3$], 0.782 [6H, t, J = 7.0 Hz, CH₃ (central fluorene)], 0.773 [12H, t, J = 7.0 Hz, CH₃ (terminal fluorenes)], 0.74–0.60 (12H, m, $CH_2CH_2C_4H_9$).

¹³C NMR (75 MHz, CDCl₃) δ 152.28, 151.89, 151.08, 144.20, 143.93, 141.83, 140.96, 140.26, 138.63, 138.60, 137.99, 137.39, 132.62, 132.61, 130.11, 129.89, 127.58, 126.93, 126.12, 125.87, 122.97, 121.97 (×2), 121.31, 121.22, 120.71, 120.66, 120.62, 120.31, 120.03, 55.69, 55.34, (40.47, 40.49), (31.54, 31.51), 29.71, (23.91, 23.80), (22.62, 22.60), 14.02.

m/z (MALDI-TOF, dithranol matrix/THF): 1426.78 (93%), 1427.78 (100%), 1428.78 (71%), 1429.78 (34%). [Exact Mass (calcd): 1426.7846. Calculated MS: m/z 1427.79 (100.0%), 1426.78 (93.4%), 1428.79 (53.0%), 1429.79 (18.5%), 1429.78 (9.0%), 1428.78 (8.4%)].

Anal. Calcd for C₉₉H₁₁₀O₄S₂ (M.W. 1428.06): C, 83.26; H, 7.76; S, 4.49. Found: C, 83.07; H, 7.93; S, 4.39

3,7-Bis[7-(9,9-di-n-hexylfluorene-2-yl)-9,9-di-n-hexylfluorene-2-yl]dibenzothiophene-S,S-dioxide (FFSFF).

To a flask containing compound **6** (0.20 g, 0.19 mmol), 9,9-di-*n*-hexyl-2-fluoreneboronic acid (0.22 g, 0.58 mmol) and dichlorobis(triphenylphosphine)palladium(II) (9 mg, 0.01 mmol), degassed 2 M potassium carbonate aqueous solution (0.9 cm³) and 1,4-dioxane (5 cm³) were added via syringe. The reaction mixture was stirred under argon with heating on

an oil bath at 95 °C for 18 h with protection from light. After removing the solvent, the product was extracted with dichloromethane (50 cm³), washed with water and dried over anhydrous magnesium sulphate. After evaporation of the solvent, the residue was purified by column chromatography on silica gel eluting first with cyclohexane to remove byproducts and then with mixture of cyclohexane and dichloromethane (cHex:DCM=3:1 v/v) to obtain the title product, **FFSFF** (0.21 g, 69%), as a light yellow powder, m.p. 225.6–226.3 °C.

¹H NMR (500 MHz, CDCl₃): δ 8.18 (2H, d, J = 1.5 Hz, H-4,6 dibenzothiophene), 7.99 (2H, dd, J = 1.5 and 8.0 Hz, H-2,8 dibenzothiophene), 7.93 (2H, d, J = 8.0 Hz, H-1,9 dibenzothiophene), 7.85 (2H, d, J = 7.0 Hz), 7.83 (2H, d, J = 8.0 Hz), 7.80 (2H, d, J = 7.5 Hz), 7.75 (2H, d, J = 7.0 Hz), 7.70–7.63 (12H, m), 7.39–7.31 (6H, m), 2.16–2.08 [8H, m, $CH_2C_5H_{11}$ (inner fluorene)], 2.08–1.98 [8H, m, $CH_2C_5H_{11}$ (terminal fluorene)], 1.18–1.02 [48H, m,

 $CH_2CH_2(CH_2)_3CH_3$], 0.778 [12H, t, J = 7.0 Hz, CH₃ (inner fluorene)], 0.773 [12H, t, J = 7.0 Hz, CH₃ (terminal fluorene)], 0.78–0.66 (16H, m, $CH_2CH_2C_4H_9$).

¹³C NMR (100 MHz, CDCl₃) δ 152.20, 151.87, 151.51, 151.00, 144.16, 141.53, 141.11, 140.73, 140.46, 140.31, 139.44, 138.65, 137.42, 132.58, 129.98, 127.05, 126.80, 126.28, 126.08, 125.99, 122.93, 121.94, 121.50, 121.43, 121.31, 120.65, 120.37, 120.27, 119.92, 119.75, 55.50, 55.17, (40.54, 40.37), (31.49, 31.47), 29.68, (23.85, 23.78), (22.59, 22.56), 14.02.

m/z (MALDI-TOF, dithranol matrix/THF): 1544.92 (95%), 1545.92 (100%), 1546.92 (88%), 1547.91 (62%), 1548.91 (27%).

[Exact Mass (calcd): 1545.0261. Calculated MS: m/z 1546.03 (100.0%), 1545.03 (82.6%), 1547.03 (60.0%), 1548.04 (23.8%), 1549.04 (7.0%), 1548.03 (4.5%), 1547.02 (3.7%)].

Anal. Calcd for C₁₁₂H₁₃₆O₂S (M.W. 1546.34): C, 86.99; H, 8.86; S, 2.07. Found: C, 86.89; H, 8.91; S, 2.15

Cyclic voltammetry and Spectroelectrochemistry.

Cyclic voltammetry experiments were performed on a BAS-CV50W electrochemical workstation with *iR* compensation at 100 mV s⁻¹, using Ag/Ag⁺ (0.01 M AgNO₃ in dry acetonitrile), platinum disk ($\emptyset = 1.6$ mm or 2.0 mm) and platinum wire as the reference, working and counter electrodes, respectively. Oxidation potentials were measured in dichloromethane and reduction potentials were measured in dry tetrahydrofuran solution under argon at room temperature. The solutions contained the substrate in concentrations *ca*. $2-5 \times 10^{-4}$ M, together with *n*-Bu₄NPF₆ (0.2 M) as the supporting electrolyte.

Spectroelectrochemical measurements were performed on a Varian Cary 5E spectrophotometer in a 1 mm quartz cell using a Pt grid as the working electrode and Pt wire as the counter and reference electrodes, in DCM solution with $0.1 \text{ M Bu}_4\text{NPF}_6$ as the supporting electrolyte.

Computational Procedures

The *ab initio* computations were performed for compounds with 9,9-diethyl substituents on the fluorene ring (instead of the 9,9-dihexylfluorene derivatives studied experimentally) to decrease the computation time. The optimisation of the geometries of dibenzothiophene-*S*,*S*-dioxide (**S**), 9,9-diethylfluorene **F(Et**), its trimer **FFF(Et**) and pentamer **FFFF(Et**), as well as compounds **FSF(Et**), **FFSFF(Et**), and **FSFSF(Et**) were carried out with the Gaussian 98⁵ package of programs at density-functional theory (DFT) level using Pople's 6-31G split valence basis set supplemented by *d*-polarisation functions on heavy atoms. DFT calculations were carried out using Becke's three-parameter hybrid exchange functional⁶ with Lee–Yang–Parr gradient-corrected correlation functional (B3LYP).⁷ Thus, optimization of the geometries and calculation of electronic structures were performed at B3LYP/6-31G(d) level of theory. Contours of HOMO and LUMO orbitals were visualised using Molekel v.4.3 program.⁸ No constraints of bonds/angles/dihedral angles were applied in the calculations and all the atoms were free to optimise.

References

- 1 G. A. Crosby and J. N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem., 1971, **75**, 991–1024.
- 2 L.-O. Pålsson and A. P. Monkman, Measurements of solid-state photoluminescence quantum yields of films using a fluorimeter. *Adv. Mater.*, 2002, **14**, 757–758.
- 3 G. Hughes, C. Wang, A. S. Batsanov, M. Fearn, S. Frank, M. R. Bryce, I. F. Perepichka, A. P. Monkman and B. P. Lyons, New pyrimidine- and fluorene-containing oligo(arylene)s: synthesis, crystal structures, optoelectronic properties and a theoretical study. *Org. Biomol. Chem.*, 2003, 3069–3077.
- 4 H. Sirringhaus, R. H. Friend, C. Wang, J. Leuninger and K. Müllen, Dibenzothienobisbenzothiophene a novel fused-ring oligomer with high field-effect mobility. *J. Mater. Chem.*, 1999, **9**, 2095–2101.
- 5 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.
- 6 (a) A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A*, 1988, 38, 3098–3100; (b) A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.*, 1993, 98, 5648–5652.
- 7 C. Lee, W. Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B*, 1988, **37**, 785.
- 8 (a) (a) P. Flükiger, H. P. Lüthi, S. Portmann and J. Weber, Molekel, Version 4, Swiss Center for Scientific Computing, Manno (Switzerland), 2000. S. Portman, Molekel, Version 4.3.win32, CSCS/ETHZ, 2002; http://www.cscs.ch/molekel/; (b) S. Portmann and H. P. Lüthi, *Chimia*, 2000, 54, 766.

B3LYP/6-31(d) optimised geometries of F(Et), FFF(Et), FFFF(Et), S, FSF(Et), FFSFF(Et) and FSFSF(Et)

9,9-Diethylfluorene **F(Et)** E = -658.6761028 Hartree

Dipole moment: 0.3637 Debye. _____

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	YY	Z
1	6	0	3.460451	0.538079	0.000117
2	6	0	3.015416	1.863983	0.000018
3	6	0	1.648977	2.154080	-0.000015
4	6	0	0.734657	1.098842	0.000067
5	6	0	1.180882	-0.238250	0.000114
6	6	0	2.542993	-0.519937	0.000156
7	6	0	-0.734588	1.098852	-0.000050
8	6	0	-1.180862	-0.238225	-0.000138
9	6	0	0.000023	-1.208909	-0.000004
10	6	0	-1.648879	2.154116	0.000065
11	6	0	-3.015329	1.864058	0.000014
12	6	0	-3.460401	0.538169	-0.000140
13	6	0	-2.542971	-0.519878	-0.000208
14	6	0	0.000395	-2.123093	-1.260299
15	6	0	-0.000042	-1.403528	-2.612432
16	6	0	-0.000287	-2.123112	1.260285
17	6	0	-0.000360	-1.403593	2.612441
18	1	0	4.526572	0.327008	0.000170
19	1	0	3.738656	2.675247	-0.000048
20	1	0	1.307951	3.186443	-0.000127
21	1	0	2.899903	-1.547510	0.000243
22	1	0	-1.307822	3.186468	0.000201
23	1	0	-3.738547	2.675342	0.000098
24	1	0	-4.526528	0.327126	-0.000197
25	1	0	-2.899918	-1.547438	-0.000324
26	1	0	0.878037	-2.781219	-1.198775
27	1	0	-0.876501	-2.782218	-1.198805
28	1	0	0.000128	-2.133117	-3.430287
29	1	0	-0.885500	-0.770125	-2.729340
30	1	0	0.884924	-0.769485	-2.729589
31	1	0	-0.877610	-2.781644	1.198569
32	1	0	0.876917	-2.781849	1.198976
33	1	0	-0.000586	-2.133215	3.430269
34	1	0	0.884944	-0.770014	2.729583
35	1	0	-0.885473	-0.769731	2.729425

FFF (Et)

HF=-1973.6464711 Hartree Dipole moment: 0.1697 Debye

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Angs Y	stroms) Z
1	6	0	-0.729096	0.791568	-0.073076
2	6	0	0.729158	0.791531	0.072480
3	6	0	1.174266	-0.545209	0.121834
4	6	0	-0.000027	-1.516443	-0.000254
5	6	0	-1.174284	-0.545145	-0.122326
6	6	0	-2.525537	-0.831409	-0.252725
7	6	0	-3.468906	0.213647	-0.337062
8	6	0	-3.005068	1.542669	-0.287760
9	6	0	-1.649204	1.838507	-0.157346
10	6	0	1.649266	1.838460	0.156725
11	6	0	3.005123	1.542591	0.287242
12	6	0	3.468873	0.213559	0.336679
13	6	0	2.525507	-0.831497	0.252360
14	6	0	-0.130203	-2.430502	1.253577
1.5	6	0	0.130123	-2.430447	-1.254133
16	6	0	-4.916749	-0.082318	-0.467483
17	6	0	4 916756	-0 082408	0 467300
18	6	0	-5 363107	-1 162699	-1 253084
19	6	0	-6 718428	-1 463196	-1 378287
20	6	0	-7 655026	-0 674160	-0 708360
20	6	0	-/.000020	-0.0/4100	-0./00300

ESI: I. I. Perepichka et a	I. "Dibenzothiopher	ne-S,S-dioxide -	- Fluorene C	Co-oligomers"	, Chem. Comm., 2	:005
21 6	0	-7.228036	0.412774	0.080319		
22 6	0	-5.876954	0.706370	0.199581		
23 6	0	5.876989	0.706199	-0.199799		
24 6	0	7.228079	0.412675	-0.080320		
25 6	0	7.654978	-0.674097	0.708617		
26 6	0	6./18338	-1.463062	1.3/8568		
27 6		-0.110712	-1.102000	-0 642646		
20 6	5 0	-9.583395	0 283034	0 193011		
30 6	, O	-8.419922	1.117194	0.728892		
31 6	0	8.420026	1.116998	-0.728859		
32 6	0	9.583459	0.283067	-0.192552		
33 6	0	9.118694	-0.753238	0.643196		
34 6	0	-10.015360	-1.639874	-1.242995		
35 6	0	-11.382369	-1.483273	-1.003092		
37 6	5 U	-11.045092	-0.433960	-0.1/4004		
38	, 0	10.946096	0.432748	-0.426864		
39 6	0	11.845745	-0.455660	0.175717		
40 6	0	11.382338	-1.482879	1.004216		
41 6	0	10.015293	-1.639558	1.243869		
42 6	0	8.524254	2.607717	-0.291897		
43 6	0	8.342500	1.073486	-2.283491		
44 6		8.233841	-0.319624	-2.910835 1 216192		
46 6	5 O	-8 342103	1 074158	2 283509		
47 6	0	-8.233362	-0.318772	2.911239		
48 6	0	-8.524299	2.607790	0.291490		
49 6	0	-8.613348	2.860397	-1.216642		
50 6	0	-0.267080	-1.709270	2.597882		
51 6	0	0.266731	-1.709161	-2.598434		
52 I	. 0	-2.8/2060	-1.801885	-0.201384		
54 1	. 0	-1.320262	2.874410	-0.130822		
55 1	. 0	1.320316	2.874356	0.130108		
56 1	. 0	3.720140	2.355151	0.379789		
57 1	. 0	2.872039	-1.861965	0.261346		
58 1	. 0	-0.998168	-3.086859	1.103044		
59 I	. 0	0./4/6/6	-3.090597	1.281089		
61 1	. 0	-0.747659	-3.090675	-1.281546		
62 1	. 0	-4.633767	-1.759257	-1.793612		
63 1	. 0	-7.033464	-2.299358	-1.997626		
64 1	. 0	-5.544975	1.526410	0.831577		
65 1	. 0	5.545033	1.526115	-0.831962		
66 <u> </u> 67 1	. 0	/.033360	-2.2990/5	1.998113		
68 1	. 0	-9.660281	-2.440369	-1.887298		
69 1	. 0	-12.091893	-2.165496	-1.463898		
70 1	. 0	-12.912156	-0.346012	0.003278		
71 1	. 0	-11.316929	1.228054	1.070183		
72 1	. 0	11.317099	1.228098	-1.069518		
/3 1	. 0	12.912235	-0.345652	-0.002026		
74 1	. 0	9 660160	-2.104972	1 888235		
76 1	. 0	9.404468	3.041640	-0.785878		
77 1	. 0	7.654691	3.140771	-0.700437		
78 1	. 0	7.481341	1.680719	-2.594493		
79 1	. 0	9.231399	1.583449	-2.679515		
80 1	. 0	8.177773	-0.240631	-4.002473		
	. 0	9.101999	-0.939/46	-2.664295		
83 1	. 0	8.690516	3,935414	1.416928		
84 1	. 0	7.726678	2.486158	1.739115		
85 1	. 0	9.491422	2.374307	1.652384		
86 1	. 0	-7.480875	1.681463	2.594177		
87 1	. 0	-9.230905	1.584272	2.679565		
88 I 90 1	. 0	-8.1//192	-0.239503	4.002852		
90 1	0	-7.336099	-0.843585	2.567256		
91 1	. 0	-9.404379	3.041845	0.785597		
92 1	. 0	-7.654617	3.140946	0.699640		
93 1	. 0	-8.690921	3.934967	-1.417688		
94 1	. 0	-7.727360	2.485504	-1.739732		
95 l	. 0	-9.492102	2.3/3885	-1.652388 3.410000		
97 I	. 0	0.603337	-1.077901	2.804906		
98 1	. 0	-1.157835	-1.072963	2.621835		
99 1	. 0	0.353774	-2.437375	-3.412795		
100 1	. 0	-0.603857	-1.078009	-2.805395		
101 1	. 0	1.157327	-1.0/2634	-2.622440		

FFFFF (Et)

HF=-3288.6168836 Hartree Dipole moment: 0.0487 Debye

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Υ	Z
1	 6	0	-0.730910	0.052002	0.892746
2	6	0	0.730937	-0.052265	0.892730
3	6	0	1.177206	-0.089522	-0.444054
4	6	0	-0.000007	-0.000087	-1.415498
5	6	0	-1.177203	0.089293	-0.444027
6	6	0	-2.531432	0.183316	-0.730312
/	6	0	-3.4/6853	0.241446	0.314698
0 9	6	0	-3.012172	0.202015	1 939651
10	6	0	1.653254	-0.109850	1.939616
11	6	0	3.012214	-0.203089	1.643705
12	6	0	3.476870	-0.241691	0.314626
13	6	0	2.531430	-0.183543	-0.730367
14	6	0	-4.927267	0.336128	0.018241
15	6	0	4.927281	-0.336329	0.018154
10	6	0	-5.391561	1.113808	-1.060506
18	6	0	-7 670091	0 514042	-1.301200
19	6	0	-7.225062	-0.268284	0.510588
20	6	0	-5.871790	-0.355908	0.804702
21	6	0	5.871778	0.355773	0.804587
22	6	0	7.225051	0.268202	0.510469
23	6	0	7.670110	-0.514137	-0.574534
24	6	0	6.749106	-1.208531	-1.361339
25	6	0	5.391603	-1.114022	-1.060573
26 27	6	0	-9.129/63	0.414249	-0.653290
28	6	0	-8.402082	-0.946891	1.212572
29	6	0	8.402038	0.946914	1.212406
30	6	0	9.576956	0.439434	0.375386
31	6	0	9.129777	-0.414284	-0.653395
32	6	0	-10.048660	0.997497	-1.527869
33	6	0	-11.405840	0.723593	-1.368574
34	6	0	-11.872173	-0.127019	-0.347400
36	6	0	-10.929982	-0.707194	0.527450
37	6	0	11.872168	0.127084	-0.347505
38	6	0	11.405870	-0.723574	-1.368657
39	6	0	10.048700	-0.997530	-1.527950
40	6	0	8.520174	0.512621	2.702956
41	6	0	8.285933	2.498874	1.168510
42	6	0	8.158759	3.121999	-0.224913
43	6	0	8.646495	-0.992/2/	2.956034
44	6	0	-0.200049	-2.490002	-0 224539
46	6	0	-8.520202	-0.512482	2.703086
47	6	0	-8.646427	0.992894	2.956055
48	6	0	-13.321484	-0.405836	-0.196370
49	6	0	13.321473	0.405930	-0.196451
50	6	0	-14.278186	0.606728	-0.416510
51	6	0	-15.631286	0.332946	-0.275830
52	6	0	-16.064316	-0.95/584	0.088541
54	6	0	-13.130903	-1.688606	0.313444
55	6	0	13.773421	1.688690	0.169598
56	6	0	15.130848	1.970991	0.313522
57	6	0	16.064284	0.957705	0.088614
58	6	0	15.631292	-0.332809	-0.275862
59	6	0	14.278202	-0.606605	-0.416614
60	6	0	17.529853	0.956352	0.160482
61	6	0	17.989859	-0.338522	-0.156051
62	6	U	16.820530	-1.2/6294	-0.456033
64	6 0	0	-17 989859	1.2/0402 0 338679	-0.400998
6.5	6	0	-17.529890	-0.956220	0.160307
66	6	õ	-19.353224	0.612993	-0.163181
67	6	0	-20.258437	-0.409678	0.147166
68	6	0	-19.799838	-1.693216	0.461541
69	6	0	-18.432122	-1.976040	0.470575
70	6	0	18.432051	1.976161	0.470886

ESI: I. I. Perepichka e	et al	. "Dibenzothiophene-S,S-dioxide -	- Fluorene (Co-oligomers",	, Chem.	Comm.,	2005
71	6	0 19.799771	1.693352	0.461934			
72	6	0 20.258407	0.409841	0.147505			
73	6	0 19.353228	-0.612819	-0.162977			
74	6	0 16.767420	-2.473081	0.539372			
75	6	0 16.891650	-1.851926	-1.900757			
76	6	0 16.957215	-0.820630	-3.031243			
//	6	0 16.688528	-2.106653	2.024404			
78	6		2 473149	-1.900677			
80	6		0 821019	-3 031259			
81	6	0 -16.688648	2.106554	2.024523			
82	6	0 -0.095018	-1.257007	-2.329400			
83	6	0 0.094979	1.256885	-2.329328			
84	6	0 0.193790	2.604707	-1.608480			
85	6	0 -0.193799	-2.604874	-1.608632			
86	1	0 -2.878148	0.184145	-1.760777			
87	1	0 -3.729648	0.274748	2.456281			
88	1	0 -1.323/16	0.091100	2.975553			
90	1	0 1.525764	-0.091412	2.975525			
91	1	0 2.878127	-0.184341	-1.760839			
92	1	0 -4.674740	1.672811	-1.655222			
93	1	0 -7.078424	1.822659	-2.195614			
94	1	0 -5.525101	-0.981604	1.623537			
95	1	0 5.525065	0.981482	1.623404			
96	1	0 7.078492	-1.822838	-2.195663			
97	1	0 4.674803	-1.673080	-1.655262			
98	1	0 -9.717694	1.650267	-2.331808			
99	1		1.152883	-2.065179			
100	1		-1.343607	1 227272			
101	1	0 12.120271	-1.152871	-2.065234			
103	1	0 9.717759	-1.650345	-2.331862			
104	1	0 9.388630	1.028169	3.135327			
105	1	0 7.641601	0.899669	3.237250			
106	1	0 7.418723	2.788762	1.777485			
107	1	0 9.165966	2.916860	1.676339			
108	1	0 8.078403	4.212208	-0.147394			
109	1	0 9.030285	2.893908	-0.847420			
110	1	0 7.20/885	2./5/004	-0.746370			
112	1	0 0.720040	-1.191129	2 581171			
113	1	0 9 536209	-1 406697	2 470436			
114	1	0 -7.418872	-2.788731	1.777843			
115	1	0 -9.166117	-2.916760	1.676656			
116	1	0 -8.078524	-4.212343	-0.146891			
117	1	0 -9.030359	-2.894112	-0.847101			
118	1	0 -7.267958	-2.757227	-0.746010			
119	1	0 -9.388690	-1.027947	3.135490			
120	1	0 -7.641655	-0.899543	3.237415			
122	1		1 527002	2 501120			
123	1	0 -9 536118	1 406890	2 470436			
124	1	0 -13.943062	1.609093	-0.671362			
125	1	0 -15.449973	-2.973488	0.587254			
126	1	0 -13.046885	-2.482932	0.314840			
127	1	0 13.046820	2.482993	0.314862			
128	1	0 15.449887	2.973570	0.587415			
129	1	0 13.943103	-1.608962	-0.671527			
130	1		1.607664	-0.406279			
131	1	0 -21.325600	-0.204115	0.143569			
133	⊥ 1		-2.477047	0.700436			
134	1	0 18.080645	2.975462	0.715582			
135	1	0 20.513686	2.477176	0.700956			
136	1	0 21.325573	0.204290	0.143972			
137	1	0 19.720426	-1.607468	-0.406123			
138	1	0 15.902593	-3.095635	0.271708			
139	1	0 17.655195	-3.095986	0.363953			
140	1	0 17.768362	-2.511661	-1.957784			
141	1	U 16.016118	-2.499054	-2.048395			
⊥4∠ 1/3	⊥ 1	U 16.998608	-1.324915	-4.003432 _3 020002			
144	⊥ 1	0 17 846105	-0.187061	-2,945038			
145	1	0 16.650543	-3.014071	2.637776			
146	1	0 17.560510	-1.524862	2.340876			
147	1	0 15.792504	-1.516822	2.243888			
148	1	0 -17.768232	2.511941	-1.957721			
149	1	0 -16.015978	2.499379	-2.048179			
150	1	0 -15.902583	3.095715	0.271984			
151	T	0 -17.655192	3.096086	U.36411/			

153	1	0	-16.077658	0.168372	-3.029966
154 155	1	0	-17.845824	0.18/41/	-2.945195
156	1	0	-17.560664	1.524746	2.340874
157	1	0	-15.792653	1.516674	2.243993
158	1	0	-0.966810	-1.131089	-2.985878
159	1	0	0.783236	-1.259830	-2.989586
160	1	0	0.966750	1.131005	-2.985842
161	1	0	-0.783295	1.259752	-2.989488
162	1	0	0.255225	3.421011	-2.337129
163	1	0	-0.681119	2.786198	-0.975497
164	1	0	1.084669	2.655381	-0.973921
165	1	0	-0.255239	-3.421133	-2.337330
166	1	0	0.681125	-2.786394	-0.975676
167	1	0	-1.084665	-2.655599	-0.974059

Dibenzothiophene-S,S-dioxide ${\bf S}$

E = -1010.6677122 Hartree Dipole moment: 5.5106 Debye

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z
1			0 739396	0 954552	0 000036
2	6	0	-0 739398	0 954551	0.000031
3	6	0	-1 291507	-0 334065	-0.000103
4	16	0	0.000001	-1.589902	0.000073
5	6	0	1.291506	-0.334064	-0.000101
6	6	0	2.657404	-0.569394	-0.000223
7	6	0	3.511578	0.538248	-0.000148
8	6	0	2.985258	1.833660	0.000011
9	6	0	1.604886	2.050675	0.000078
10	6	0	-1.604888	2.050674	0.000060
11	6	0	-2.985259	1.833659	-0.000014
12	6	0	-3.511579	0.538246	-0.000144
13	6	0	-2.657404	-0.569395	-0.000211
14	8	0	0.000021	-2.335388	-1.267246
15	8	0	-0.000018	-2.334828	1.267732
16	1	0	3.049302	-1.581898	-0.000366
17	1	0	4.587284	0.389568	-0.000229
18	1	0	3.658462	2.686251	0.000080
19	1	0	1.214004	3.064117	0.000183
20	1	0	-1.214006	3.064116	0.000153
21	1	0	-3.658464	2.686249	0.000031
22	1	0	-4.587285	0.389566	-0.000205
23	1	0	-3.049302	-1.581900	-0.000328

FSF (Et)

HF=-2325.6383698 Hartree Dipole moment: 5.7212 Debye

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z
1	 6	0	-0.734237	0.437726	-0.066638
2	6	0	0.734183	0.437728	0.063396
3	6	0	1.285960	-0.850136	0.120445
4	16	0	-0.000093	-2.105708	-0.000802
5	6	0	-1.286103	-0.850146	-0.122640
6	6	0	-2.642369	-1.089985	-0.241855
7	6	0	-3.525139	0.005847	-0.314661
8	6	0	-2.978714	1.302938	-0.258905
9	6	0	-1.607880	1.525619	-0.135873
10	6	0	1.607871	1.525620	0.132049
11	6	0	2.978653	1.302952	0.255678
12	6	0	3.524977	0.005868	0.312644
13	6	0	2.642171	-1.089965	0.240313
14	8	0	-0.118191	-2.851432	1.261589
15	8	0	0.117984	-2.851978	-1.262871
16	6	0	-4.986565	-0.205343	-0.444700
17	6	0	4.986326	-0.205281	0.443631
18	6	0	-5.490551	-1.249991	-1.242585
19	6	0	-6.861107	-1.463625	-1.377802

ESI: I. I. Perepichka et al	"Dibenzothiophene-S, S-	dioxide – Fluorer	ne Co-oligomers"	, Chem.	Comm.,	2005
20 6	0 -7	750234 -0 624	840 -0 703478			
20 0	0 -7	262491 0.024	0.62 0.103322			
22 6	0 -5	897041 0.633	544 0 230029			
23 6	0 5.	897227 0.633	046 -0.231217			
24 6	0 7	262601 0.422	745 -0 103376			
25 6	0 7	749837 -0 624	414 0 704695			
26 6	0 6.	860281 -1.462	705 1.379069			
27 6	0 5	489809 -1 249	256 1 242717			
28 6	0 -9.	216350 -0.611	043 -0.650879			
29 6	0 -9.	621232 0.440	946 0.196040			
30 6	0 -8.	412286 1.187	840 0.758480			
31 6	0 8.	412820 1.187	065 -0.758324			
32 6	0 9.	621418 0.440	896 -0.194173			
33 6	0 9.	215993 -0.610	460 0.653273			
34 6	0 -10.	161046 -1.429	695 -1.273543			
35 6	0 -11.	517261 -1.188	586 -1.044331			
36 6	0 -11.	921696 -0.145	364 -0.204630			
37 6	0 -10.	973879 0.674	618 0.420074			
38 6	0 10.	974213 0.674	599 -0.417278			
39 6	0 11.	921644 -0.144	720 0.208881			
40 6	0 11.	516672 -1.187	329 1.049083			
41 6	0 10.	160305 -1.428	463 1.277370			
42 6	0 8.	416805 2.690	927 -0.357310			
43 6	0 8.	352052 1.102	291 -2.312653			
44 6	0 8.	339568 -0.307	760 -2.910610			
45 6	0 8.	474952 2.986	622 1.144565			
46 6	0 -8.	350193 1.104	643 2.312817			
47 6	0 -8.	336992 -0.304	813 2.912163			
48 6	0 -8.	416848 2.691	316 0.355931			
49 6	0 -8.	476364 2.985	488 -1.146184			
50 1	0 -3.	024059 -2.106	059 -0.252600			
51 1	0 -3.	645146 2.156	446 -0.339554			
52 1	0 -1.	228004 2.542	938 -0.104865			
53 1	0 1.	228060 2.542	938 0.100187			
54 L	0 3.	645105 2.156	482 0.335917			
55 I	0 3.	023795 -2.106	0.251981			
	0 -4.	/9/112 -1.885	306 -1.786328			
50 I	0 -7.	223403 -2.271 510150 1 424	220 0 072750			
50 I	0 -5.	519752 1.424	166 _0 875874			
60 1	0 7	222181 -2 270	314 2 010038			
61 1	0 4	796025 -1 884	140 1 786523			
62 1	-9	851153 -2 241	915 -1 926243			
63 1	0 -12	264599 -1.816	628 -1.521779			
64 1	0 -12	980693 0.030	331 -0.035363			
65 1	0 -11.	300082 1.482	457 1.071178			
66 1	0 11.	300825 1.481	961 -1.068770			
67 1	0 12.	980753 0.031	0.040355			
68 1	0 12.	263708 -1.814	876 1.527653			
69 1	0 9.	850009 -2.240	215 1.930462			
70 1	0 9.	271184 3.169	056 -0.855483			
71 1	0 7.	518588 3.156	497 -0.786036			
72 1	0 7.	456831 1.646	138 -2.644365			
73 1	0 9.	209920 1.659	937 -2.712626			
74 1	0 8.	290323 -0.254	286 -4.003995			
75 1	0 9.	243130 -0.865	679 -2.643709			
76 1	0 7.	474205 -0.883	175 -2.565645			
77 1	0 8.	471674 4.068	653 1.318386			
78 1	0 7.	614873 2.560	790 1.672146			
79 1	0 9.	383412 2.578	019 1.599056			
80 1	0 -7.	454758 1.648	936 2.643219			
81 1	0 -9.	207792 1.662	566 2.712977			
82 1	0 -8.	286578 -0.250	250 4.005441			
83 1	0 -9.	240805 -0.863	067 2.646803			
84 1	0 -7.	4/1966 -0.880	526 2.566848			
85 1	0 -9.	2/08/0 3.169	810 U.854369			
86 1	0 -7.	3.157	46Z U./83392			
8/ 1	0 -8.	4/3283 4.067	344 -1.321098			
	U =/.	010/4/ 2.559 385223 0 ETC	101 -1.0/4118 300 _1 500/25			
ـــــــــــــــــــــــــــــــــــــ	-9.	2.3/0				

FFSFF

HF=-3640.6088025 Hartree

Dipole moment: 5.6270 Debye

Center	Atomic	Atomic	Coord	linates (Angst:	roms)
Number	Number	Туре	Х	Y	Z

1	6	0	-0.734056	-0.174462	0.352944
2	6	0	0.737589	-0.182755	0.273078
2	6	0	1 202010	1 000500	0.047751
3	6	0	1.283016	1.068283	-0.04//51
4 1	16	0	-0.014456	2.302747	-0.245150
5	6	0	-1 296426	1 084274	0 097036
c S	6	0	2.650160	1 201005	0.000540
6	6	0	-2.030102	1.321805	0.099542
7	6	0	-3.537050	0.256296	0.379921
8	6	0	-2 978959	-1 009499	0 647288
0	0	0	2.970939	1.009499	0.047200
9	6	0	-1.60281/	-1.231922	0.633503
10	6	0	1.619818	-1.249126	0.462936
11	6	0	2 991540	-1 043368	0 323375
11	0	0	2.991340	1.045500	0.525575
12	6	0	3.532268	0.216775	-0.000511
13	6	0	2.640291	1.292752	-0.183219
1 /	0	0	_0 007650	2 750721	_1 6/1205
14	0	0	0.007030	2.155121	1.041303
15	8	0	0.049315	3.303370	0.831136
16	6	0	-5.004430	0.464590	0.383811
17	6	0	4 004110	0 406500	-0 154702
1/	0	0	4.994110	0.400399	-0.134/93
18	6	0	-5.557278	1.670951	0.854926
19	6	0	-6.933648	1.888682	0.854223
20	6	0	-7 701006	0 007600	0 274772
20	0	0	-/./81000	0.887680	0.3/4//2
21	6	0	-7.244705	-0.328385	-0.096546
2.2	6	0	-5.873836	-0.538577	-0.092645
23	6	0	5 903760	-0 207000	0 660033
20	U	0	5.505/00	-0.29/000	0.000933
24	6	0	7.269434	-0.118853	0.497318
25	6	0	7.759896	0.769551	-0.481835
26	6	-	6 070104	1 176100	_1 205500
20	U	U	0.0/2134	1.4/0102	-1.290592
27	6	0	5.501635	1.289676	-1.127274
28	6	0	-9.239175	0.835550	0.242107
20	-	0	0 500000	0 400565	0 2170/0
29	Ö	U	-9.393668	-0.408565	-0.31/263
30	6	0	-8.353485	-1.263669	-0.579347
31	6	0	8,418343	-0.774948	1,263437
20	-	0	0 620004	_0 125551	0 500550
JZ	U	U	9.0∠9004	-0.133551	0.382552
33	6	0	9.223870	0.755724	-0.431403
34	6	0	-10.229034	1.766153	0.564546
25	6	0	11 50000	1 447071	0.001010
30	6	0	-11.303909	1.44/3/1	0.323729
36	6	0	-11.938625	0.209100	-0.234605
37	6	0	-10 925431	-0 719545	-0 551449
57	0	0	10.020401	0.719949	0.551445
38	6	0	10.9//209	-0.344086	0.836683
39	6	0	11.955578	0.334991	0.081443
10	6	0	11 530556	1 223366	-0 926178
40	0	0	11.000000	1.223300	-0.920170
41	6	0	10.178925	1.438193	-1.187584
42	6	0	8.411633	-2.324025	1.100583
10	6	0	0.265704	0 4471000	2.704010
43	6	0	8.303/84	-0.44/100	2./84218
44	6	0	8.367918	1.040073	3.150588
4.5	6	0	8.463616	-2.848099	-0.337686
10	6	0	0 100724	1 (15010	0.000100
40	o	U	-8.199/34	-1.012313	-2.088TA8
47	6	0	-8.147228	-0.426913	-3.052398
48	6	0	-8.383413	-2.593364	0.230382
	- -	0	0.500410	2.333304	1 2 2 2 0 2 0 2
49	ю	U	-8.532731	-2.450781	1.747929
50	6	0	-13.365618	-0.109146	-0.486385
51	6	0	13 100212	0 115422	0 226010
J 1	U	0	13.400343	0.110432	0.000010
52	6	0	-14.370292	0.321556	0.404796
53	6	0	-15,701655	0.019589	0.156160
5.0	с С	0	10.001000	0.010100	0.100100
54	0	U	-10.064206	-0./21/12	-0.986298
55	6	0	-15.082653	-1.156538	-1.878460
56	6	0	-13,747732	-0.847519	-1.623268
	c c	0	10.000406	0.01/01/2	1 640450
5 /	ю	U	⊥3.883406	-0.05/96/	1.648452
58	6	0	15.237514	-0.267143	1.905219
59	6	0	16 134016	-0 3056/3	0 836503
	0	0	10.104910	0.00040	0.0000000
60	ю	U	15.669922	-0.134867	-0.482608
61	6	0	14.320751	0.073199	-0.730671
62	6	0	17 507070	-0 506006	0 707365
o∠	Ö	U	11.28/9/9	-0.506886	U./9/365
63	6	0	18.006957	-0.464404	-0.548465
64	6	0	16.821321	-0.228452	-1,483656
C T	0	0	10.021021	0.220932	1.100000
60	ю	U	-10.934235	0.380224	U.985622
66	6	0	-18.047257	-0.254243	0.152049
67	6	0	-17 521555	-0 801700	-0 990515
 	0	0	10 110-00	0.091/90	0.000040
68	6	0	-19.417506	-0.266317	0.389670
69	6	0	-20.263333	-0.917716	-0.516771
70	6	0	-19 730160	-1 550104	-1 6/00/5
10	U	U	-19./39408	-1.000104	-1.049045
71	6	0	-18.364601	-1.541773	-1.894534
72	6	0	18,511520	-0.713541	1.824370
72	c c	0	10.011020	0.07/71	1 405010
13	0	U	TA'82A218	-0.8/6715	1.49/316
74	6	0	20.277438	-0.834650	0.163117
75	6	0	19 3508/8	-0 628310	-0 866557
15	0	0	19.300040	0.020349	0.000000/
76	6	0	16.626010	-1.406900	-2.482880
77	6	0	16.981738	1.082792	-2.307693
78	6	0	17 100000	2 261110	_1 /0/050
10	o	U	T1.T8880à	∠.304418	-1.494953
79	6	0	16.447597	-2.793604	-1.857546
15					
80	6	0	-17,112776	1,921521	1.117832
80 81	6	0	-17.112776	1.921521	1.117832

82	6	0	-17.196263	2.702874	-0.196986
83	6	0	-16 680611	-1 7/0070	2 500216
0.5	0	0	-10.000011	-1.742372	2.300210
84	1	0	-3.045103	2.307327	-0.139359
85	1	0	-3.641596	-1.833916	0.892831
86	1	0	-1 215340	-2 223718	0 849068
00	1	0	1.213340	2.223710	0.049000
8 /	T	0	1.24568/	-2.240191	0./03864
88	1	0	3.663205	-1.888271	0.441235
89	1	0	3 013810	2 287317	-0 405495
00	1	0	4 000100	2.207017	1 051070
90	T	0	-4.899192	2.438481	1.2518/3
91	1	0	-7.333524	2.826897	1.229883
92	1	0	-5.458836	-1,462709	-0.487332
0.2	1	0	5 525502	-0 060259	1 /2557/
95	1	0	5.525503	-0.900330	1.433374
94	T	0	7.236039	2.156856	-2.060/65
95	1	0	4.811212	1.814511	-1.781115
96	1	0	-9 970097	2 733698	0 987217
07	1	ő	10 222076	2.101420	0.507217
97	Ţ	0	-12.3332/6	2.181439	0.5450/0
98	1	0	-11.200775	-1.689917	-0.957044
99	1	0	11.291177	-1.052862	1.598876
100	1	0	10 075010	1 770006	1 404400
100	1	0	12.273819	1.112320	-1.494490
101	1	0	9.881119	2.135742	-1.966401
102	1	0	9.264538	-2.725181	1.664757
103	1	0	7 511690	-2 710844	1 598350
100	1	0	7.JII009	2./10044	T.J202J0
104	Ţ	0	/.468069	-0.924169	3.200914
105	1	0	9.221262	-0.942199	3.263777
106	1	0	8.332943	1,162306	4,238980
107	1	0	0.070/10	1 6/1660	2 700442
1 U /	T	U	9.2/0619	1.541559	∠./४७443
108	1	0	7.501183	1.559528	2.728707
109	1	0	8.450150	-3.943851	-0.343168
110	1	0	7 606241	-2 400606	_0 022220
110	1	0	7.000341	-2.499090	-0.923230
111	1	0	9.375082	-2.522357	-0.849269
112	1	0	-7.287906	-2.217976	-2.202874
113	1	0	-9 033966	-2 274538	-2 365847
114	1	0	9.000000	0.270345	2.000017
114	Ţ	0	-8.036946	-0.//9/45	-4.083948
115	1	0	-9.061779	0.172912	-2.999842
116	1	0	-7.300109	0.230886	-2.832265
117	1	0	0.206564	2 206071	0 1 6 0 2 4 2
11/	T	0	-9.206364	-3.2009/1	-0.160242
118	1	0	-7.460982	-3.146151	0.004536
119	1	0	-8.533974	-3.437999	2.223675
120	1	0	7 700457	1 070165	2 170002
120	1	0	= 7.709437	-1.0/2100	2.1/9902
121	1	0	-9.470120	-1.951121	2.013109
122	1	0	-14.088144	0.869344	1.300499
1 2 2	1	0	-15 247050	_1 720201	-2 760221
125	1	0	13.347030	1.720391	2.709521
124	1	0	-12.985833	-1.158370	-2.332254
125	1	0	13.187279	0.000732	2.480343
126	1	0	15 582818	-0 388085	2 928963
120	-	0	10.002010	0.000000	2.920905
127	1	0	13.957865	0.177461	-1.750217
128	1	0	-19.835491	0.221605	1.267308
129	1	0	-21.335300	-0.931930	-0.338617
120	1	0	21.3333000	0.001000	0.0001/
130	T	U	-20.40/829	-2.052034	-2.343/10
131	1	0	-17.962452	-2.034588	-2.776220
132	1	0	18,191626	-0.746854	2.862903
100	1	0	10.191020	1 007407	2.002903
133	Ţ	0	20.589789	-1.037487	2.286026
134	1	0	21.329585	-0.963185	-0.076741
135	1	Ο	19,686925	-0.597684	-1.900600
100	1	0	15 754155	1 175104	2 100000
130 1	T	U	15./5415/	-1.1/5194	-3.103833
137	1	0	17.491187	-1.420569	-3.159775
138	1	0	17.827839	0.946998	-2.995216
120	1	0	10 001 411	1 100700	2.040070
T 2 A	T	U	10.091411	1.192/30	-2.9420/2
140	1	0	17.289500	3.226421	-2.164189
141	1	0	16.343053	2,557060	-0.826542
1 1 2	1	0	10 004000	2 200000	_0 000700
14∠	T	U	10.094883	2.308266	-0.882/90
143	1	0	16.325868	-3.550303	-2.640883
144	1	0	17.315595	-3.074892	-1.252203
145	1	0	15 561000	-2 022250	_1 01/701
140	1	U	TO.00TAA0	-2.032239	-1.214/31
146	1	0	-18.019603	2.106274	1.709820
147	1	0	-16.276553	2.306471	1.717722
1 / 0	1	0	_16 044022	0 260200	2 0 = 1 / / / /
⊥4ŏ	T	U	-10.044022	0.209280	2.954444
149	1	0	-17.786603	0.063783	2.948059
150	1	Ω	-17.313756	3.773671	0.004618
1 = 1	1	0	16 000470	0 570771	0.700000
121	T	U	-16.2904/2	2.5/2//1	-0./98258
152	1	0	-18.050400	2.380835	-0.801757
153	1	0	-16.657892	-2.065325	3.547006
1 5 4	1	0	17 514440	2.0000220	0.011000
154	1	0	-17.514443	-2.269459	2.011267
155	1	0	-15.755867	-2.062315	2.024080

FSFSF

HF=-3992.6004057 Hartree Dipole moment: 8.7453 Debye

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	¥ 	Z Z
1	6	0	0.732158	-1.169860	-0.021637
2	6	0	-0.732091	-1.169613	0.026383
3	6	0	-1.179241	0.167278	0.041965
4	6	0	0.000124	1.139163	-0.005870
6	6	0	2.536714	0.450848	-0.090439
7	6	0	3.478568	-0.598209	-0.107591
8	6	0	3.014006	-1.927319	-0.080940
9	6	0	1.652413	-2.219867	-0.039469
10	6	0	-1.652425	-2.219388	0.051/90
12	6	0	-3.478431	-0.597140	0.109030
13	6	0	-2.536501	0.451703	0.084250
14	6	0	4.931895	-0.309374	-0.150931
15	6	0	-4.931746	-0.308017	0.150758
16 17	6	0	5.4390/3	0./65213	-0.90/389
18	6	0	7.706861	0.261783	-0.253345
19	6	0	7.193810	-0.805646	0.497452
20	6	0	5.846215	-1.105857	0.566792
21	6	0	-5.846237	-1.109673	-0.560975
22	6	0	-7.193838	-0.809131	-0.493306
23	6	0	-6.801493	1.061640	0.250045
25	6	0	-5.438776	0.771865	0.899733
26	6	0	9.173594	0.382253	-0.168545
27	6	0	9.762969	-0.586732	0.656156
28	16	0	8.515373	-1.686921	1.347426
29 30	10	0	-9 763107	-1.09/000	-1.333642
31	6	Ő	-9.173506	0.383245	0.164941
32	6	0	10.014114	1.309940	-0.788556
33	6	0	11.389790	1.248268	-0.570675
34	6	0	11.974273	0.271638	0.259471
35	6	0	-11 125005	-0.665397	-0.876039
37	6	0	-11.974392	0.269186	-0.261118
38	6	0	-11.389649	1.251911	0.561633
39	6	0	-10.013896	1.315324	0.778493
40	8	0	-8.661601	-3.053424	-0.786026
41	8	0	8.411128	-1.501890	2.802896
43	6	0	13.439945	0.228431	0.476645
44	6	0	-13.440157	0.224154	-0.477248
45	6	0	14.332097	0.522383	-0.574993
46	6	0	15.701765	0.478634	-0.358484
47	6	0	15 341276	-0 149394	1 963294
49	6	0	13.966576	-0.106887	1.738556
50	6	0	-13.967410	-0.121471	-1.736114
51	6	0	-15.342222	-0.165829	-1.959821
52	6	0	-16.212293	0.136889	-0.910991
54	6	0	-14.331804	0.401230	0.572355
55	6	0	-17.677636	0.170969	-0.849410
56	6	0	-18.059635	0.530773	0.459168
57	6	0	-16.834787	0.753187	1.346035
58	6	0	16.835487	0.741992	-1.349338
59 60	6	0	17 677220	0.527070	-0.460058
61	6	0	19.407169	0.630827	-0.789313
62	6	0	20.372098	0.385518	0.195370
63	6	0	19.989780	0.038971	1.495701
64	6	0	18.639061	-0.067614	1.833557
65 66	6	U	-18.639944	-0.083186	-1.829091
67	6	0	-20.372194	0.383691	-0.193953
68	6	õ	-19.406786	0.637256	0.788175
69	6	0	-16.802807	-0.235737	2.549171
70	6	0	-16.778713	2.203264	1.909804
71	6	0	-16.805582	3.328992	0.871636
73	о А	0	-16.780016	2.187020	∠.⊥95870 -1.925853
74	6	õ	16.803856	-0.257681	-2.543737
75	6	0	16.804891	3.321682	-0.897375
76	6	0	16.857094	-1.743727	-2.176890
77	6	0	0.047101	2.057091	1.250998

ESI:	I. I. Perepichka	et al.	"Dibenzothiophene	-S,S-dioxide -	- Fluorene Co	o-oligomers	.", Chem.	Comm.,	2005
	= 0	~	0	0.046554	0 0 4 5 5 5 4	1 0 0 0 5 0 0			
	/8	6	0	-0.046//4	2.04//54	-1.269522			
	/9	6	0	-0.095448	1.323153	-2.618099			
	80	6	0	0.094929	1.342501	2.604931			
	81	8	0	-8.412200	-1.523548	-2.792780			
	82	1	0	2.884805	1.480836	-0.081144			
	83	1	0	3.731374	-2.741902	-0.121555			
	84	1	0	1.320556	-3.254726	-0.028944			
	85	1	0	-1.320660	-3.254325	0.048453			
	86	1	0	-3.731385	-2.740663	0.138068			
	87	1	0	-2.884508	1.481633	0.067888			
	88	1	0	4.748881	1.372045	-1.485867			
	89	1	0	7.150940	1.888352	-1.565898			
	90	1	0	5.495479	-1.926330	1.184901			
	91	1	0	-5.495631	-1.934520	-1.173315			
	92	1	0	-7.150536	1.899481	1.550822			
	93	1	0	-4.748439	1.382855	1.473641			
	94	1	0	9.604749	2.085132	-1.430232			
	95	1	0	12.029615	1.992050	-1.035983			
	96	1	0	11.535828	-1.451833	1.505967			
	97	1	0	-11.536176	-1.463265	-1.495231			
	98	1	0	-12.029303	1.999052	1.021773			
	99	1	0	-9.604389	2.095268	1.414297			
	100	1	0	13.938007	0.753499	-1.561708			
	101	1	0	15.720989	-0.401537	2.949983			
	102	1	0	13.287084	-0.308412	2.561741			
	103	1	0	-13.288322	-0.329703	-2.557961			
	104	1	0	-15.722411	-0.426039	-2.944228			
	105	1	0	-13.937243	0.766115	1.556909			
	106	1	0	19.715947	0.898591	-1.797185			
	107	1	0	21.427095	0.464433	-0.053074			
	108	1	0	20.750176	-0.148992	2.248945			
	109	1	0	18.346628	-0.337393	2.845208			
	110	1	0	-18.347984	-0.361482	-2.838571			
	111	1	0	-20.751257	-0.168065	-2.242778			
	112	1	0	-21.427069	0.464662	0.054347			
	113	1	0	-19.715112	0.913394	1.793919			
	114	1	0	-15.892510	-0.030794	3.129264			
	115	1	0	-17.644805	0.012547	3.209595			
	116	1	0	-17.621926	2.327263	2.602914			
	117	1	0	-15.870083	2.291887	2.521243			
	118	1	0	-16.761573	4.304766	1.368577			
	119	1	0	-15.954050	3.264437	0.185969			
	120	1	0	-17.721604	3.300040	0.272623			
	121	1	0	-16.823010	-2.332026	3.107615			
	122	1	0	-17.776136	-1.977427	1.658933			
	123	1	0	-16.008272	-2.019579	1.568358			
	124	1	0	17.624366	2.305062	-2.618625			
	125	1	0	15.872388	2.270120	-2.539565			
	126	1	0	15.893564	-0.058044	-3.125657			
	127	1	0	17.645881	-0.015144	-3.206242			
	128	1	0	16.761645	4.293158	-1.402725			
	129	1	0	15.952117	3.262792	-0.212742			
	130	1	0	17.719804	3.297977	-0.296430			
	131	1	0	16.824368	-2.359058	-3.083005			
	132	1	0	17.777326	-1.991011	-1.637562			
	133	1	0	16.009484	-2.032528	-1.546747			
	134	1	0	0.922260	2.714117	1.155344			
	135	1	0	-0.830587	2.717156	1.217359			
	136	1	0	-0.921599	2.705871	-1.178491			
	137	1	0	0.831242	2.707608	-1.241046			
	138	1	0	-0.123630	2.050035	-3.437551			
	139	1	0	0.784036	0.687576	-2.765115			
	140	1	0	-0.985179	0.690799	-2.703063			
	141	1	0	0.122843	2.075428	3.418993			
	142	1	0	-0./84764	0.708209	2.756221			
	143	⊥ 	U	U.9844/3	U./IU6U6	∠.७95064			

Differential scanning calorimetry of FFSFF

ESI: I. I. Perepichka et al. "Dibenzothiophene-S, S-dioxide - Fluorene Co-oligomers...", Chem. Comm., 2005

[The film of **FFSFF** was drop-casted from chloroform on quartz plate and annealed at 180 °C for 24 h in air. Then it was redissolved in dichloromethane, the solvent was evaporated and the IR spectrum of **FFSFF** in KBr was recorded.]

Filename: F:\TGA\2005\Way05.tg1d Sample ID: IR-10-B4 Sample Weight: 6.089 mg Comment: IR-10-B4: May05.tg1d Unsubtracted Weight % (%) : Steps: 1-2 University Of Durham 100.7 Onset Y = 99.7003 % Onset X = 423.666 °C 95 90 85 80 75 C₆H₁₃ C₆H₁ C₆H₁ . (%) % typiant % (%) FSF 65 60 55 Onset Y = 46.1813 % 50 Onset X = 526.399 °C 45 39.4 3.884 100 200 300 400 Temperature (°C) 500 600 700 801.C 11/05/05 14:28:39 1) Hold for 1.0 min at 25.00°C 2) Heat from 25.00°C to 800.00°C at 10.00°C/min IR-26-C4: May03.tg1d Unsubtracted Weight % (%) : Steps: 1-2 Filename: F:\TGA\2005\May03.tg1d Sample ID: IR-26-C4 Sample Weight: 7.117 mg Comment University Of Durham 102.4 100 Onset Y = 97.2415 % Onset X = 424.186 °C 95 Onset Y = 99.9208 % Onset X = 105.189 °C 90 85 80 . Weight % (%) 22 C₆H₁₃ C6H13 C6H13 C6H13 C6H13 C6H13 FSFSF 70 65 60 Onset Y = 58.8594 % Onset X = 549.611 °C 55 51.19

400 Temperature (°C)

200

20.98

1) Hold for 1.0 min at 25.00°C

100

300

500

2) Heat from 25.00°C to 800.00°C at 10.00°C/min

600

700

804.7

11/05/05 11:39:34

ESI: I. I. Perepichka et al. "Dibenzothiophene-S,S-dioxide – Fluorene Co-oligomers...", Chem. Comm., 2005

$(\mathbf{r}_{i}, \mathbf{r}_{i}) \rightarrow (\mathbf{r}_{i}, \mathbf{r}_{i})$		2.2E5 2.1E5 2.0E5 1.8E5 1.6E5 1.6E5 1.3E5 1.3E5 1.2E5 1.1E5
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		2.1E5 2.0E5 1.8E5 1.7E5 1.6E5 1.5E5 1.3E5 1.3E5 1.2E5 1.1E5
$ \underbrace{ \begin{array}{c} \mathbf{B} \\ \mathbf{C}_{\mathbf{T}} $		2.0E5 1.8E5 1.7E5 1.6E5 1.6E5 1.4E5 1.3E5 1.3E5 1.2E5
$(\mathbf{r}_{\mathbf{r}}}}}}}}}}$		1.8E5 1.7E5 1.6E5 1.5E5 1.4E5 1.3E5 1.2E5 1.1E5
$(\mathbf{r}, \mathbf{r}, r$		1.7E5 1.6E5 1.5E5 1.4E5 1.3E5 1.2E5 1.1E5
$ \begin{pmatrix} \mathbf{F} \\ \mathbf{F} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H}$		1.6E5 1.5E5 1.4E5 1.3E5 1.2E5 1.1E5
$ \begin{pmatrix} \mathbf{B} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{C} \\ \mathbf{H} \\ \mathbf{H}$		1.5E5 1.4E5 1.3E5 1.2E5 1.1E5
Certia Certia Certia Certia		1.4E5 1.3E5 1.2E5 1.1E5
		1.3E5 1.2E5 1.1E5
		1.2E5 1.1E5
	i .	1.1E5
	-	
		9.8E4
		8.7E4
		7.6E4
	<u>uulu</u>	6.5E4
		5.4E4
	,	4.3E4
350 869		3.3E4
		2.2E4
		1.1E4
		0.0E0 m/7

100

120

140

160

77.226

977.77-

C₆H₁₃′

C₆H₁₃

C₆H

i

o c

39

216'121 296'221 298'521 816'921 255'221 695'221 695'221 255'221

482.041-138.609 754.751-

218.121 988.121 980.121 980.121

C6113 C6113 C6113
Exact Mass: 880.5253
554.93
504.99

• •

