Supplementary Information

X-Ray crystallographic signature of supramolecular triple helix formation from a water soluble synthetic tetrapeptide

Apurba Kumar Das,^a Debasish Haldar,^a Raghurama P. Hegde,^b N.

Shamala*^b and Arindam Banerjee*^a

^a Department of Biological Chemistry, Indian Association for the Cultivation of Science,

Jadavpur, Kolkata-700032, India E-mail: bcab@mahendra.iacs.res.in

^b Department of Physics, Indian Institute of Science, Bangalore-560 012, India E-mail shamala@physics.iisc.ernet.in

Category	Page No.
Figure S1	S2
Peptide Synthesis	S3
Figure S2	S4
Figure S3	S5
Table S1	S6
Table S2	S8
Table S3	S10

Table of Contents

Figure S1: Chemical structure of peptide 1

Peptide synthesis: The tetrapeptide was synthesized by conventional solution phase methods using racemization free fragment condensation strategy. The Boc group was used for N-terminal protection and the C-terminus was protected as a methyl ester. dicyclohexylcarbodiimide-1-hydroxybenzotriazole Couplings were mediated bv (DCC/HOBt). All intermediates have been characterized by ¹H-NMR (300MHz) and thin layer chromatography (TLC) on silica gel and used without further purification. Deprotection of methyl ester was performed using saponification method and the Boc group was deprotected by TFA. The final products were purified by column chromatography using silica (100-200 mesh size) gel as stationary phase and chloroformmethanol (6:4) as eluent. Purified final compounds have been fully characterized by 300 MHz¹H -NMR spectroscopy, Mass spectrometry. Crystals suitable for an X-ray diffraction study was obtained from water-methanol solution by slow evaporation.

¹H NMR (300 MHz, DMSO-d₆) δ 9.12 (br, 3H), 8.25 (s, 1H), 7.65 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 8.3 Hz, 1H), 7.03 (d, J = 8.3 Hz, 2H), 6.98 (d, J = 8.3 Hz, 2H), 6.67 (d, J = 8.3 Hz, 2H), 6.60 (d, J = 8.4 Hz, 2H), 4.42-4.50 (m, 1H), 3.95-3.99 (m, 1H), 3.53 (m, 1H), 2.86-3.07 (m, 2H), 2.57-2.72 (m, 2H), 2.00-2.07 (m, 1H), 1.18 (d, J = 10.5 Hz, 6H), 0.81-0.89 (m, 6H).

IR (KBr) γ_{max} 3536, 3493, 3289, 1658, 1547, 1515 cm⁻¹

Mass spectral data (ESI-MS) $m/z = 529.3 [M+H]^+$, $M_{calcd} = 528$.

Anal.Calcd. for C₂₇H₃₆N₄O₇ (528): C,61.36; H,6.81; N,10.61

Found: C, 61.28; H, 6.80; N, 10.59

Figure S2: 300 MHz ¹H NMR spectrum of peptide **1** in DMSO-d₆.

Figure S3: Typical Mass spectrum (ESI-MS) of peptide 1.

 Atom	х	у	Z	U(eq) [Ang^2]
01	-0.0521(6)	0.2484(6)	0.11438(8)	0.0766(16)
O1N	0.1882(9)	0.0964(7)	0.00985(8)	0.100(2)
O2	0.2139(7)	0.7339(6)	0.11350(7)	0.0722(16)
O3	0.6062(5)	0.9073(5)	0.13473(7)	0.0668(14)
O3N	0.3553(7)	0.7842(7)	0.24803(7)	0.0871(16)
O4	0.2680(5)	1.1625(5)	0.14990(6)	0.0632(12)
05	0.4908(6)	1.3701(5)	0.13222(7)	0.0703(14)
N1	-0.0469(6)	-0.0383(7)	0.12827(8)	0.0680(16)
N2	0.2045(5)	0.3418(5)	0.09761(6)	0.0440(12)
N3	0.3155(5)	0.5791(5)	0.12972(6)	0.0456(12)
N4	0.4478(6)	0.9834(5)	0.15444(6)	0.0492(12)
C1'	0.0574(7)	0.2186(7)	0.10724(8)	0.0520(17)
C1D1	0.1162(14) -0.0562(1	1) 0.06312(1	2) 0.099(4)
C1A	0.0308(7)	0.0356(6)	0.10817(9)	0.0526(14)
C1B	-0.0900(8)	-0.0780(7)	0.09091(10)) 0.0727(19)
C1G	-0.0134(9)	-0.0267(7)	0.06961(10) 0.068(2)
C1Z	0.1227(10)	0.0596(9)	0.02937(10) 0.075(2)
C2'	0.2482(6)	0.6164(7)	0.11324(8)	0.0487(16)
C1D2	-0.0731(9)	0.0512(10) 0.05619(1	1) 0.076(3)
C2A	0.2370(6)	0.5185(6)	0.09338(7)	0.0486(16)

Table S1: Final Coordinates (Å x 10^4) and Equivalent Isotropic Displacement Parameters (Å² x 10^3) of the non-Hydrogen atoms for peptide **1**

C3'	0.4807(6) 0.8702(6) 0.14520(8) 0.0471(16)
C1E1	0.1800(13) -0.0157(12) 0.04381(13) 0.095(3)
C3A	0.3455(6) 0.6762(6) 0.14898(7) 0.0424(14)
C3B	0.4068(9) 0.5948(7) 0.16543(8) 0.0591(19)
C3G	0.3964(8) 0.6488(7) 0.18745(8) 0.0557(17)
C3Z	0.3687(8) 0.7332(8) 0.22792(8) 0.0598(17)
C4'	0.4228(7) 1.2374(6) 0.14362(8) 0.0491(16)
C1E2	-0.0064(10) 0.0903(10) 0.03588(11) 0.082(3)
C4A	0.5474(7) 1.1727(6) 0.15065(8) 0.0481(16)
C4B	0.6628(9) 1.2802(8) 0.16858(10) 0.073(2)
C2B1	0.0989(11) 0.5122(10) 0.07902(10) 0.079(3)
C2B2	0.4133(8) 0.6170(8) 0.08259(10) 0.0673(19)
C3D1	0.2417(9) 0.5718(9) 0.19727(11) 0.089(2)
C3D2	0.5391(8) 0.7695(9) 0.19846(9) 0.0656(19)
C3E1	0.2237(10) 0.6117(10) 0.21773(10) 0.086(2)
C3E2	0.5241(9) 0.8114(9) 0.21868(10) 0.071(2)
C4G1	0.5561(13) 1.2553(12) 0.18779(11) 0.097(3)
C4G2	0.8068(12) 1.2328(13) 0.17285(16) 0.111(4)
O1W	0.8438(8) 1.6111(8) 0.12740(12) 0.107(2)
O2W	0.0609(9) 0.5269(11) 0.26517(9) 0.126(3)

O1 -C1' 1.210(9) C1D1 -C1E1 1.342(12)
O1N -C1Z 1.358(9) C1A -C1B 1.521(8)
O2 -C2' 1.214(8) C1B -C1G 1.501(9)
O3 -C3' 1.194(7) C1G -C1D2 1.364(11)
O3N -C3Z 1.400(7) C1Z -C1E2 1.360(13)
O4 -C4' 1.249(8) C1Z -C1E1 1.379(13)
O5 -C4' 1.252(6) C2' -C2A 1.522(7)
O1N -H1N 0.8217 C1D2 -C1E2 1.409(10)
O3N -H3N 0.8198 C2A -C2B2 1.518(9)
O1W -H1W2 0.96(3) C2A -C2B1 1.509(11)
O1W -H1W1 0.96(6) C3' -C3A 1.537(7)
O2W -H2W1 0.96(18) C3A -C3B 1.525(8)
O2W -H2W2 0.95(16) C3B -C3G 1.519(8)
N1 -C1A 1.462(8) C3G -C3D2 1.371(9)
N2 -C2A 1.461(6) C3G -C3D1 1.340(11)
N2 -C1' 1.356(7) C3Z -C3E2 1.327(11)
N3 -C3A 1.458(6) C3Z -C3E1 1.358(10)
N3 -C2' 1.338(7) C4' -C4A 1.537(9)
N4 -C4A 1.465(6) C4A -C4B 1.520(9)
N4 -C3' 1.313(7) C4B -C4G2 1.545(15)
N1 -H1B 0.8904 C4B -C4G1 1.506(12)
N1 -H1C 0.8912 C3D1 -C3E1 1.398(10)

Table S2 - Bond Distances (Angstrom) for peptide $\boldsymbol{1}$

N1 -H1A	0.8893 C	C3D2 -C3E2	1.383(9)
N2 -H2	0.8593 C1	D1 -H1D1	0.9292
N3 -H3	0.8600 C1	A -H1A1	0.92(7)
N4 -H4	0.8603 C1	B -H1B2	0.9706
C1' -C1A	1.509(8) C	21B -H1B1	0.9697
C1D1 -C1G	1.358(15)	C1D2 -H1D2	0.9291
C1E1 -H1E1	0.9293	C2B2 -H2B5	0.9597
СЗА -НЗА	0.97(6)	C3D1 -H3D1	0.9310
C3B -H3B1	0.9699	C3D2 -H3D2	0.9288
C3B -H3B2	0.9700	C3E1 -H3E1	0.9294
C1E2 -H1E2	0.9291	C3E2 -H3E2	0.9303
C4A -H4A	0.9800	C4G1 -H4G1	0.9601
C4B -H4B	0.9800	C4G1 -H4G2	0.9599
C2B1 -H2B1	0.9605	C4G1 -H4G3	0.9597
C2B1 -H2B2	0.9584	C4G2 -H4G5	0.9597
C2B1 -H2B3	0.9598	C4G2 -H4G6	0.9619
C2B2 -H2B6	0.9625	C4G2 -H4G4	0.9625
C2B2 -H2B4	0.9592		

Table S3 - Bond Angles	(Degrees) for peptide 1

C1Z -0	1N -H1N	109.56 C1B -C1G -C1D2 120.5(7)
C3Z -03	SN -H3N	109.56 C1D1 -C1G -C1B 121.4(7)
H1W1 -C	D1W -H1	W2 105(4) O1N -C1Z -C1E2 122.5(8)
H2W1 -C	02W -H2	W2 102(14) C1E1 -C1Z -C1E2 115.4(7)
C1' -N2	-C2A	122.6(5) O1N -C1Z -C1E1 122.0(9)
C2' -N3	-C3A	120.6(4) O2 -C2' -C2A 121.4(5)
C3' -N4	-C4A	123.6(5) N3 -C2' -C2A 116.4(5)
H1A -N	1 -H1B	109.47 O2 -C2' -N3 121.8(5)
H1A -N	1 -H1C	109.50 C1G -C1D2 -C1E2 119.8(8)
C1A -N	I -H1C	109.50 N2 -C2A -C2B1 110.6(5)
H1B -N	I -H1C	109.29 N2 -C2A -C2B2 107.1(5)
C1A -N1	I -H1A	109.46 N2 -C2A -C2' 111.6(4)
C1A -N	I -H1B	109.60 C2' -C2A -C2B1 111.3(5)
C2A -N2	2 -H2	118.77 C2' -C2A -C2B2 107.8(4)
C1' -N2	-H2	118.64 C2B1 -C2A -C2B2 108.3(5)
C3A -N3	3 -H3	119.88 O3 -C3' -N4 125.2(5)
C2' -N3	-H3	119.52 O3 -C3' -C3A 119.4(5)
C3' -N4	-H4	118.16 N4 -C3' -C3A 115.4(5)
C4A -N4	4 -H4	118.20 C1D1 -C1E1 -C1Z 123.5(11)
N2 -C1'	-C1A	116.7(5) N3 -C3A -C3' 109.2(4)
O1 -C1'	-N2	123.2(5) N3 -C3A -C3B 108.9(4)
01 -C1'	-C1A	120.1(5) C3' -C3A -C3B 112.0(5)

C1G -C1D1 -C1E1 121.1(10) C3A -C3B -	·C3G 114.6(6)
N1 -C1A -C1B 110.0(5) C3B -C3G -C3	3D1 119.4(6)
C1' -C1A -C1B 110.9(5) C3B -C3G -C3	D2 123.7(6)
N1 -C1A -C1' 107.4(5) C3D1 -C3G -C3	D2 116.9(6)
C1A -C1B -C1G 114.5(5) O3N -C3Z -C	23E2 118.8(6)
C1D1 -C1G -C1D2 118.2(7) C3E1 -C3Z -	C3E2 120.7(6)
O3N -C3Z -C3E1 120.4(7) C1Z -C1E1 -H	H1E1 118.35
O4 -C4' -C4A 120.1(4) C3' -C3A -H3A	107(2)
O5 -C4' -C4A 115.0(6) N3 -C3A -H3A	107(3)
O4 -C4' -O5 124.8(6) C3B -C3A -H3A	113(3)
C1Z -C1E2 -C1D2 121.8(8) C3G -C3B -	H3B1 108.63
N4 -C4A -C4B 114.5(4) C3G -C3B -H3	3B2 108.68
C4' -C4A -C4B 111.9(5) C3A -C3B -H3	B2 108.60
N4 -C4A -C4' 109.8(5) C3A -C3B -H3I	31 108.54
C4A -C4B -C4G2 110.6(6) H3B1 -C3B -	H3B2 107.59
C4G1 -C4B -C4G2 110.5(7) C1D2 -C1E2	-H1E2 118.98
C4A -C4B -C4G1 111.4(7) C1Z -C1E2 -J	H1E2 119.18
C3G -C3D1 -C3E1 122.4(7) C4B -C4A -	H4A 106.69
C3G -C3D2 -C3E2 121.7(7) N4 -C4A -H	I4A 106.66
C3Z -C3E1 -C3D1 118.5(8) C4' -C4A -H	4A 106.74
C3Z -C3E2 -C3D2 119.9(7) C4A -C4B -	H4B 108.12
C1G -C1D1 -H1D1 119.43 C4G1 -C4B -	·H4B 108.09
C1E1 -C1D1 -H1D1 119.44 C4G2 -C4B	-H4B 108.11

C1B -C1A -H1A1	116(3) C2A -C2B1 -H2B1	109.41
C1' -C1A -H1A1	108(3) H2B1 -C2B1 -H2B2	109.52
N1 -C1A -H1A1	104(3) H2B1 -C2B1 -H2B3	109.44
C1A -C1B -H1B1	108.67 H2B2 -C2B1 -H2B3	109.62
C1G -C1B -H1B2	108.50 C2A -C2B1 -H2B2	109.45
C1A -C1B -H1B2	108.75 C2A -C2B1 -H2B3	109.39
C1G -C1B -H1B1	108.68 C2A -C2B2 -H2B4	109.57
H1B1 -C1B -H1B2	107.57 H2B4 -C2B2 -H2B5	109.41
C1E2 -C1D2 -H1D2	119.97 C2A -C2B2 -H2B5	109.42
C1G -C1D2 -H1D2	120.21 C2A -C2B2 -H2B6	109.51
C1D1 -C1E1 -H1E1	118.10 H2B5 -C2B2 -H2B6	109.50
H2B4 -C2B2 -H2B6	109.41 H4G1 -C4G1 -H4G3	109.52
C3E1 -C3D1 -H3D1	118.88 C4B -C4G1 -H4G3	109.46
C3G -C3D1 -H3D1	118.73 H4G1 -C4G1 -H4G2	109.50
C3G -C3D2 -H3D2	119.27 H4G2 -C4G1 -H4G3	109.47
C3E2 -C3D2 -H3D2	119.06 C4B -C4G2 -H4G5	109.45
C3Z -C3E1 -H3E1	120.78 C4B -C4G2 -H4G6	109.44
C3D1 -C3E1 -H3E1	120.72 H4G4 -C4G2 -H4G6	109.67
C3Z -C3E2 -H3E2	120.05 H4G5 -C4G2 -H4G6	109.39
C3D2 -C3E2 -H3E2	120.05 H4G4 -C4G2 -H4G5	109.49
C4B -C4G1 -H4G2	109.44 C4B -C4G2 -H4G4	109.39
C4B -C4G1 -H4G1	109.43	