Supplementary Information

Fast and mild palladium(II)-catalyzed 1,4-oxidation of 1,3-dienes via activation of molecular oxygen with a designed cobalt(II) porphyrin

Renzo C. Verboom, Vincent F. Slagt and Jan-E. Bäckvall*
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91
Stockholm, Sweden.

Synthesis of $\mathbf{C o (I I)}$ porphyrin 2. Co(II) porphyrin 2 was synthesized from L-valinol and 5-(2-carboxyphenyl)-10,15,20-triphenyl porphyrin 4, ${ }^{1}$ as outlined in Scheme 1. For practical reasons, the corresponding 2-(10,15,20-triphenyl-porphyrin-5-yl)benzoic acid methyl ester (3) ${ }^{2}$ was prepared by the method of Lindsey, ${ }^{3}$ using a 4:3:1 mixture of pyrrole, benzaldehyde and methyl 2-formylbenzoate. 5-(2-carboxyphenyl)-10,15,20-triphenyl porphyrin (4) was prepared by hydrolysis of 3 using a slightly different procedure as reported previously. Treatment of 4 with thionyl chloride followed by condensation with L-valinol afforded amide $\mathbf{5}$, which after insertion of cobalt gave Co(porphyrin)-amide 2 (83% from 4).

Scheme 1 Synthesis of Co(II) porphyrin 2.

General. ${ }^{1} \mathrm{H}(400$ or 300 MHz$)$ and ${ }^{13} \mathrm{C}(100$ or 75 MHz$)$ NMR spectra were recorded on a Varian Mercury spectrometer. Chemical shifts (δ) are reported in ppm, using residual solvent

[^0]\# Supplementary Material (ESI) for Chemical Communications \# This journal is © The Royal Society of Chemistry 2005
proton resonance or tetramethylsilane as internal standard. UV-vis spectra were were recorded on a Varian Cary 50 spectrometer. MALDI-TOF spectra were recorded on a Bruker Biflex III instrument. Merck silica gel 60 (240-400 mesh) was used for flash chromatography and analytical thin-layer chromatography was performed on Merck precoated silica gel $60-\mathrm{F}_{254}$ plates. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Tetrahydrofuran (THF) was freshly distilled from sodium benzophenone ketyl prior to use. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from calcium hydride. Solvents for extraction and chromatography (pentane and diethyl ether) were technical grade and distilled.

5-(2-carboxyphenyl)-10,15,20-triphenyl porphyrin (4). Methyl ester $\mathbf{3}$ ($347 \mathrm{mg}, 0.52$ mmol) was dissolved in 300 mL THF, 60 mL of a 15 N KOH solution was added and the mixture was refluxed overnight. The reaction mixture was cooled and the THF was evaporated in vacuo. $60 \mathrm{~mL} \mathrm{CH} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to redissolve the porphyrin and the organic layer was washed with water ($\times 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. Column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$) gave 299 mg (88%) of carboxy porphyrin $\mathbf{3}$ as a purple solid.

2-(10,15,20-triphenyl-porphyrin-5-yl)benzoyl-L-valinol (5). Acid 4 ($299 \mathrm{mg}, 0.46 \mathrm{mmol}$) was dissolved in 15 mL SOCl 2 and the solution was heated at reflux temperature for 2.5 h . The solvent was evaporated in vacuo and coevaporated with toluene ($\times 3$). The material was dissolved in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{3} \mathrm{~N}(127 \mu \mathrm{~L}, 0.91 \mathrm{mmol})$ was added and the solution was cooled to 0 ${ }^{\circ} \mathrm{C}$. L-valinol ($70.4 \mathrm{mg}, 0.68 \mathrm{mmol}$), dissolved in $1 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added and the solution was stirred for 3 h , during which it was allowed to reach $\mathrm{rt} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the organic phase was washed with water, saturated aqueous NaHCO_{3}, and water. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated in vacuo. Column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 95:5) gave $299 \mathrm{mg}(88 \%)$ of amide $\mathbf{4}$ as a purple solid. ${ }^{1} \mathrm{H}$ NMR: $\delta 8.96-8.82(\mathrm{~m}, 7 \mathrm{H}), 8.76-8.74$ (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34-8.29(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.17(\mathrm{~m}, 6 \mathrm{H}), 7.95-7.88$ (dt, $J=7.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 11 \mathrm{H}), 4.92-4.87(\mathrm{br} \mathrm{d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.28$ (m, 2H), 0.25-0.15 (m, 1H), -0.42 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),-0.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}),-1.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $-2.80(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\delta 168.8,142.1,142.0,141.9,140.2,139.0,135.3,135.0,134.8-134.1$, 129.1, 128.7, 128.0, 126.9-126.4, 121.2, 121.1, 120.9, 116.8, 61.5, 58.7, 56.3, 27.5, 18.6, 18.4, 17.5 (contains some traces of $\mathrm{Et}_{3} \mathrm{~N}$). UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda=419,515,551,591,657 \mathrm{~nm}$. MALDI-TOF MS: Calc. for $\mathrm{C}_{50} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{2}$: 743.3259; Found 743.4592 [M] ${ }^{+}$.

2-(10,15,20-triphenyl-cobalt(II)porphyrin-5-yl)benzoyl-L-valinol (Co(II) porphyrin 2).

 A solution of $\mathrm{Co}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(264 \mathrm{mg}, 1.06 \mathrm{mmol})$, dissolved in 12.5 mL MeOH , was added to a solution of amide $5(263 \mathrm{mg}, 0.35 \mathrm{mmol})$ in $50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the reaction was heated at reflux temperature for 4 h . After cooling to rt , the solution was washed with water $(\times 4)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was evaporated. $267 \mathrm{mg}(94 \%)$ of 2 was obtained as a purple-red solid. UV-VIS $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda=412$, 530 nm . MALDI-TOF MS: Calc. for $\mathrm{C}_{50} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Co}$: 800.2436; Found $800.3088[\mathrm{M}]^{+}$.General procedure for the aerobic 1,4-oxidation of 1,3-dienes. 1,3-Cyclohexadiene (95 $\mu \mathrm{L}, 1.0 \mathrm{mmol}$) was added to a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(5.61 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{Co}(\mathrm{II})$ porphyrin $2(22 \mathrm{mg}, 0.0275 \mathrm{mmol})$ in 2 mL HOAc. The reaction was stirred under an oxygen atmosphere at room temperature for 16 h . The solution was diluted with saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$ and extracted with pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1(3 \times 15 \mathrm{~mL})$. The combined organic phases were washed with ice-cold $1 \mathrm{M} \mathrm{NaOH}(3 \times 10 \mathrm{~mL})$ and the combined aqueous phases were back-extracted with pentane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with saturated aqueous $\mathrm{NaCl}(2 \times 5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated.

Table 1. Aerobic 1,4-oxidation of 1,3-cyclohexadiene: variation of solvents ${ }^{a}$

entry	ligand	oxidant	solvent	yield $(\%)^{b}$	trans $/ \mathrm{cis}^{c}$
1	$\mathbf{2}$	O_{2}	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH}=(5 / 1)$	32	$83: 17$
2	$\mathbf{2}$	O_{2}	Acetone $/ \mathrm{AcOH}=(5 / 1)$	17	$76: 24$
$\mathbf{3}$	$\mathbf{2}$	O_{2}	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{AcOH}=(5 / 1)$	18	$18: 82$
4	$\mathbf{2}$	O_{2}	$\mathrm{DMSO} / \mathrm{AcOH}=(5 / 1)$	19	$2: 98$
5	$\mathbf{2}$	O_{2}	$\mathrm{DMF} / \mathrm{AcOH}=(5 / 1)$	21	$68: 32$
6	$\mathbf{2}$	O_{2}	$\mathrm{THF} / \mathrm{AcOH}=(5 / 1)$	21	$81: 19$
7	$\mathbf{2}$	O_{2}	$\mathrm{EtOAc} / \mathrm{AcOH}=(5 / 1)$	26	$81: 19$
8	$\mathbf{2}$	O_{2}	AcOH	44	$47: 53$
9^{d}	$\mathbf{2}$	O_{2}	AcOH	19	$22: 78$
10^{e}	-	O_{2}	$\mathrm{DMSO} / \mathrm{AcOH}=(1 / 1)$	20	$5: 95$

[^1]UV-vis spectroscopy titration experiments. In a typical experiment the UV-vis cuvette was filled with 2.5 ml of $1.0^{*} 10^{-6} \mathrm{M} \mathrm{Co}$ (II) porphyrin $\mathbf{2}$ in acetic acid. In addition, a $2.5^{*} 10^{-3} \mathrm{M}$ lithium acetate and a $1.0 * 10^{-6} \mathrm{M} \mathrm{Co}$ (II) porphyrin 2 solution in acetic acid was added stepwise. Measurements were performed at room temperature under air. In the UV-vis spectrum the typical decrease of the Q-bands of the porphyrin at 530 nm was followed (figure 1). We have analyzed the titration curves with a fitting program developed by Hunter. ${ }^{4}$

Figure 1. Plot of absorption at 530 nm (Abs) versus the concentration of LiOAc (mM) taken from the spectroscopy titration experiments in acetic acid, $\mathrm{K}_{1}=2.2 \times 10^{3} \mathrm{M}^{-1}$ and $\mathrm{K}_{2}=1.0 \times 10^{4} \mathrm{M}^{-1}$.

Figure 2. Hill-plot of absorption at 530nm taken from the spectroscopy titration experiments in acetic acid $\left(\mathrm{Y}=\right.$ Fractional saturation, Hill coefficient $\left.\left(\mathrm{n}_{\mathrm{h}}\right)=1.5\right)$.

[^2]
[^0]: ${ }^{1}$ (a) Peng, X.-B.; Huang, J. W.; Li, T.; Ji, L.-N. Inorg. Chim. Acta 2000, 305, 111. (b) Peng, X.-B.; Huang, J. W.; Ji, L.-N. Chem. J. Chin. Univ. 1 1999, 19.
 ${ }^{2}$ Cho, H. S.; Jeong, D. H.; Yoon, M.-C.; Kim, Y. H.; Kim, Y.-R.; Kim, D.; Jeong, S. C.; Kim, S. K.; Aratani, N.; Shinmori, H.; Osuka, A. J. Phys. Chem. A 2001, 105, 4200.
 ${ }^{3}$ Lee, C. H.; Lindsey, J. S. Tetrahedron 1994, 50, 11427.

[^1]: ${ }^{a}$ Reactions were performed on a 0.5 mmol scale. Reaction conditions: the diene was added to a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{~mol} \%), 2(2.75 \mathrm{~mol} \%)$ and $\mathrm{LiOAc}(30 \mathrm{~mol} \%)$ in 1 mL solvent. The reaction was stirred at rt under an oxygen atmosphere for 16 h . ${ }^{b}$ Isolated yields of 1,4-diacetoxy-2cyclohexene. ${ }^{c}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ With $10 \mathrm{~mol} \% \mathrm{LiCl}$. ${ }^{e}$ Performed on a 1.0 mmol scale. Reaction conditions: the diene was added to a solution of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{~mol} \%)$ and $\mathrm{LiOAc}(30$ $\mathrm{mol} \%$) in 2 mL solvent. The reaction was stirred at rt under an oxygen atmosphere for 16 h .

[^2]: 4 Bisson, A. P.; Hunter, C. A.; Carlos, J.; Young, K. Chem. Eur. J. 1998, 4, 845.

