Combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins

María Pérez, Felipe Lombó, Lili Zhu, Miranda Gibson, Alfredo F. Braña, Jürgen Rohr, José A. Salas and Carmen Méndez *

Supporting information

Microorganisms, culture conditions and vectors

Saccharopolyspora spinosa (spinosyn producer) was used as source of DNA. pLN2, pLNR, pLNRho and pLNBIV^{2c} were used as sources of sugar DNA cassettes. *Streptomyces lividans* 16F4⁵ was used as host for gene expression. Growth was carried out on trypticase soya broth (TSB; Oxoid) or R5A medium⁸ for product isolation. For sporulation we used agar plates containing A medium⁸ for 7 days at 30°C. *Escherichia coli* DH10B (Invitrogene) was used as a host for subcloning and was grown at 37° C in TSB medium. pCRBlunt (Invitrogene), pUC18, and pIAGO⁹ were used as vectors for subcloning experiments and DNA sequencing. When antibiotic selection of transformants was needed, 50 µg/ml of thiostrepton, 25 µg/ml of apramycin, 50 µg/ml of kanamycin, or 100 µg/ml of ampicillin were used.

DNA manipulation and sequencing

Plasmid DNA preparations, restriction endonuclease digestions, alkaline phosphatase treatments, ligations and other DNA manipulations were according to standard procedures for *Streptomyces*¹⁰ and for *E.coli*¹¹. Sequencing was performed by using the dideoxynucleotide chain-terminator method¹² and the Thermo Sequenase Labelled Primer Cycle Sequencing Kit with 7-deaza-dGTP (Amersham Biosciences). Both DNA strands were sequenced with primers supplied in the kits or with internal oligoprimers (18-mer) using an ALF-express automatic DNA sequencer (Pharmacia). Computer-assisted data base searching and sequence analyses were carried out using the University of Wisconsin Genetics Computer Group programs package¹³ and the BLAST program¹⁴.

PCR amplification

Primers for *spnQ* amplification, including extra *Xba*l sites at both extremes were: FL-Sq-up: 5'-**TCTAGA**AAGACTGATCGTCGCCTG-3'. FL-Sq-rp: 5'-**TCTAGA**CTAGGAACTCTTGGCCAC-3'. The resulting PCR amplicon was subcloned into plasmid pCR-blunt (Invitrogene), generating pFL838.

PCR reaction conditions were as follows: 100 ng of template DNA were mixed with 30 pmols of each primer and 1.25 units of Platinum-Pfx DNA Polymerase (Invitrogene) in a total reaction volume of 50 μ l containing 1 mM MgSO₄, 0.3 mM of each dNTP, 1x Pfx-buffer, and in some cases PCRx Enhancer Solution. The polimerization reactions were performed in a thermocycler (PT-100, MJ Research). General conditions for PCR amplification were as follows: 2 min at 94° C; 30 cycles composed of 30 s at 94° C, 1 min at the primers annealing temperature (58° C), and 80 s at 68° C; 5 min at 68° C; and 15 min at 4° C. The PCR products were purified with GFX PCR DNA and Gel Band Purification Kit (Amersham Biosciences), subcloned into pCRBlunt and sequenced.

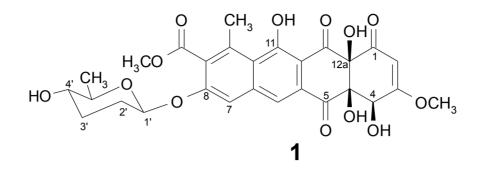
Production conditions and chromatographic techniques

Spores of *S. lividans* 16F4 containing the different constructs were grown in R5A medium according to conditions previously described.^{2c} HPLC analyses were performed as previously described.^{2c}

Mass spectra and NMR analysis

HPLC-MS analysis of the glycosylated compounds was carried out using a chromatographic equipment coupled to a ZQ4000 mass spectrometer (Waters-Micromass), using electrospray ionization in the positive mode, with a capillary voltage of 3 kV and a cone voltage of 20 V. Chromatographic conditions were as previously described,^{2c} except for the column size (2.1 x 150 mm) and flow rate (0.25 ml/min).

A SymmetryPrep C18 column (7.8 x 300 mm, Waters) was used for compound purification, with acetonitrile and 0.1% trifluoroacetic acid as solvents. The new compounds were eluted in isocratic mode with 40%.


Standards with pure compounds were used for L-olivosyl, L-digitoxosyl-, D-olivosyl-TCM and -ELM comparisons.

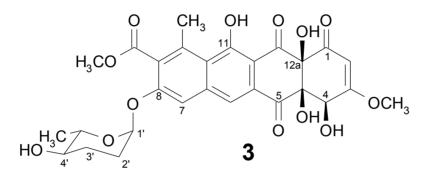
Isolation and physico-chemical characterization of the new amicetosyltetracenomycins

Final purification was achieved by semi-preparative HPLC. Semi-preparative HPLC was run on a Waters Delta 600 instrument with a Waters 996 photodiode array detector (Waters symmetry C₁₈ column, 19 x 150 mm, particle size 7 μ m; solvent system: linear gradient H₂O:CH₃CN 80:20 to 40:60 within 30 min, flow rate 10 ml/min). HPLC/MS was performed on a Waters Alliance 2695 system with Waters 2996 photodiode array detector and a Micromass ZQ 2000 mass spectrometer equipped with an APCI ionization probe (Waters symmetry C₁₈, 4.6 x 50 mm, particle size 5 μ m; solvent system: linear gradient H₂O:CH₃CN = 75:25 to 30:70 within 12 min; flow rate = 0.5 mL/min).

8-Demethyl-8-b-D-amicetosyl-tetracenomycin C (1)

Yield: 10 mg; $R_{rel} = 4.15$ min (analytical HPLC-MS) MW = 572 g/mol ($C_{28}H_{28}O_{13}$) Positive mode APCI-MS (from HPLC-MS): m/z = 573 (10%, M+H)⁺; 459 (100%, aglycon), 441 (60%), 423 (30%), 409 (45%), 346 (100%), 313 (30%). UV maxima (from HPLC-diode array): 250 (60%), 288 (100%), 390 (35%), 413 (35%)

NMR data of 8-Demethyl-8- β -D-amicetosyl-tetracenomycin C (1). Given are d-values in ppm relative to TMS, in d_6 -DMSO.


position	¹ H, 400 MHz d/ppm (multiplicity, <i>J</i> /Hz)	¹³ C (100 MHz)
1		190.9
23	5.47 (d, <i>J</i> = 1.5 Hz)	100.6
3		173.2
3-OCH ₃	3.70 (s)	56.7
4- H	4.77 (dd, <i>J</i> = 8; 1.5 Hz)	71.0
4-OH	5.91 (d, J = 8 Hz)	
4a		87.4 ^a
4a-OH	5.55 (s)	
5		191.4 ^b
5a		139.8
6	7.94 (s)	119.8
6a		129.2 °
7	7.80 (s)	111.0
8		153.7
9		128.3
9-CO		167.3
9-OCH ₃	3.89 (s)	55.5
10		136.9
10-CH ₃	2.77 (s)	20.6
10a		120.2 °
11		166.0
11 - OH	13.83 (br s)	
11a		109.3
12		193.7 ^b
12a-OH	6.09 (s)	
12a		85.1 ^a
1'	$5.88 (dd, J = 12; 2 Hz)^*$	94.5
2'ax	$1.90 - 2.10 (m, compl.)^{\#}$	35.1 ^d
2'eq	1.90 - 2.10 (m, compl.) [#]	

3'ax	$1.82 (m, compl.)^{\#}$	26.8 ^d
3'eq	1.63 (dddd, J = 17; 5; 5; 5)	
4'	3.15 (dddd, <i>J</i> = 10; 10; 6.5; 5 Hz)	52.7
4'-OH	4.71 (d, J = 6.5 Hz)	
5'	$3.39 (\mathrm{dq}, J = 6.5; 5 \mathrm{Hz})^{\&}$	64.9
6'	1.06 (d, J = 6.5 Hz)	18.0

br = broad; * coupling constants are not exact due to overlap with 4-OH; [#]compl. = complex due to overlap with other signals; [&] partly obscured by water signal; ^{a,b,c,d} assignments mutually interchangeable

8-Demethyl-8-a-L-amicetosyl-tetracenomycin C (3)

Yield: 7 mg; $R_{rel} = 4.33$ min (analytical HPLC-MS) MW = 572 g/mol ($C_{28}H_{28}O_{13}$) Positive mode APCI-MS (from HPLC-MS): m/z = 573 (5%, M+H)⁺; 459 (100%, aglycon), 441 (70%), 423 (30%), 409 (30%), 346 (90%), 313 (25%). UV maxima (from HPLC-diode array): 240 sh (60%), 287 (100%), 390 (35%), 412 (35%)

NMR data of 8-Demethyl-8- α -L-amicetosyl-tetracenomycin C **3**. Given are δ -values in ppm relative to TMS, in d_6 -DMSO.

compound	¹ H (400 MHz)	¹³ C (100 MHz)
3		
1		190.9
2	5.48 (d, J = 1.5 Hz)	100.4
3		172.9
3-OCH ₃	3.70 (s)	56.6
4-H	4.77 (dd, <i>J</i> = 8; 1.5 Hz)	71.0
4-OH	5.89 (d, J = 8 Hz)	
4a		87.3 ^a
4a-OH	n.o.*	
5		192.9 ^b
5a		139.7
6	7.94 (s)	119.8
6a		129.1°
7	7.82 (s)	111.0
8		153.7
9		127.5
9-CO		167.0
9-OCH ₃	3.91 (s)	55.5
10		136.9

S- 6

10-CH ₃	2.79 (s)	20.6
10a		120.2 ^c
11		165.7
11 - OH	13.81 (br s)	
11a		109.2
12		196.1 ^b
12a-OH	6.13 (s)	
12a		85.1 ^a
1'	5.91 (s)	94.0
2'ax	$1.85 - 2.00 (m, compl.)^{\#}$	28.7 ^d
2'eq	$1.85 - 2.00 (m, compl.)^{\#}$	
3'ax	$1.82 (m, compl.)^{\#}$	26.8 ^d
3'eq	1.62 (dddd, $J = 17$; 5; 5; 5 Hz)	
4'	3.14 (dddd, J = 10; 10; 5; 5 Hz)	52.5
4 '- OH	5.01 (d, J = 5 Hz)	
5'	$3.40 (dq, J = 6.5, 5 Hz, obsc.)^{\&}$	69.9
6'	1.05 (d, J = 6.5 Hz)	18.1

br = broad; n.o. = not observed; * compl. = complex, due to overlap with other signals; * partly obscured by water signal; ^{a,b,c,d} assignmanets mutually interchangeable

References

- (8) Fernández, E., Weissbach, U., Reillo, C. S., Braña, A. F., Méndez, C., Rohr, J., Salas, J. A. *J. Bacteriol.* **1998**, *180*, 4929-4937.
- (9) Aguirrezabalaga, I., Olano, C., Allende, N., Rodriguez, L., Braña, A. F., Méndez, C., Salas, J.A. *Ag. Chemother.* **2000**. *44*, 1266-1275.
- (10) Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., Hopwood, D. A. *The John Innes Foundation. Norwich. England.* **2000**.
- (11) Sambrook J., Russell D.W., Sambrook J. *Cold Spring Harbor Laboratory.* **2001**.
- (12) Sanger, F., Nicklen, S., Coulson, A. R. *Proc. Natl. Acad. Sci. (USA)* **1977**. *74*, 5463-5467.
- (13) Devereux, J., Haeberli, P., Smithies, O. *Nucleic Acid Res.* **1984**. *12*, 387-395.
- (14) Altschul, S. F. Gish, W., Miller, W., Myers, E. W., Lipman, D. J. *J. Mol. Biol.* **1990**. *215*, 403-410.