Supplementary data

A Simple Cobalt Catalyst System for the Efficient and Regioselective Cyclotrimerisation of Alkynes

Gerhard Hilt,* Thomas Vogler, Wilfried Hess, Fabrizio Galbiati

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany Fax: (+49) 6421 2825677; Tel: (+49) 6421 2825601; E-mail: Hilt@chemie.uni-marburg.de

Experimental section:

All reactions were performed in an argon atmosphere using the Schlenk technique.

Synthesis of diimine complexes:

Ligands were synthesized as previously described in the literature. The complexes were synthesized by suspending anhydrous $CoBr_2$ (1.68 g, 10.0 mmol) and ligand (10.0 mmol) in anhydrous THF (40 mL) at r.t. After stirring overnight the solvent was removed *in vacuo* and the solid product used without further characterisation.

Representative procedure:

A suspension of $\text{CoBr}_2(\text{cy-diimine})$ (44 mg, 0.1 mmol, 5.0 mol%), zinc dust (13 mg, 0.2 mmol, 10.0 mol%) and anhydrous ZnI₂ (64 mg, 0.2 mmol, 10.0 mol%) in anhydrous CH₃CN (1.0 mL) under Argon atmosphere was boiled up and allowed to cool to room temperature. After 15 min the alkyne (2.0 mmol) was added and the mixture stirred at room temperature for terminal alkynes or 80 °C for internal alkynes. The reaction was monitored by TLC and GC/MS. After complete conversion the brown reaction mixture was passed through a pad of silica using CH₂Cl₂ as eluent. The solvents were removed in vacuo and the crude product purified by FC. The spectroscopic characteristics of already known products were compared with published data.

Competetive reaction of Phenylacetylene and Isoprene in THF:

Similarly to the representative procedure Isoprene (0.24 mL, 2.0 mmol) and Phenylacetylene (0.22 mmol, 2.4 mmol were reacted in THF at r.t. for 5 h. The brown reaction mixture was passed through a pad of silica using CH_2Cl_2 as eluent. The solvents were removed in vacuo and

the crude product purified by FC using Pentan as eluent giving 5 (161 mg, 0.95 mmol), 6 (63 mg, 0.23 mmol) and 1/2 (50 mg, 0.16 mmol).

1: 1,2,4-Triphenylbenzene / 2: 1,3,5-Triphenylbenzene: The isomeric ratio was determined as previously described via careful integration of ¹H NMR-spectra.^{1,2,3}

6: 6-Methyl-2,3-diphenyl-cycloocta-1,3,6-triene

¹H NMR (300 MHz, 300K, CDCl₃): $\delta = 7.42$ (d, 4H, J = 7.3, H_{ar}), 7.25 (m, 4H, H_{ar}), 6.23 (t, 1H, J = 7.7 Hz, CH), 6.20 (t, 1H, J = 7.7, CH), 5.56 (td, 1H, J = 5.0, 0.7 Hz), 2.86 (broad, 4H, CH₂), 1.87 (s, 3H, Me).

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 141.1$ (C), 140.6 (C), 138.9 (C_{ar}), 135.1 (C_{ar}), 128.5 (CH_{ar}), 127.1 (CH_{ar}), 126.8 (CH_{ar}), 123.9 (CH), 123.4 (CH), 120.2 (CH), 34.0 (CH₂), 28.3 (CH₂), 27.3 (CH₃).

MS (70 eV), m/z (%): 272 (47, M⁺), 257 (23, M⁺-Me), 244 (100,), 229 (51), 217 (24), 202 (14), 178 (17), 165 (23), 115 (19), 91 (17).

HRMS calcd. for C₂₁H₂₀ 272.1565, found: 272.1559.

Table 2, Entry 1:

A: 1,2,4-Tributyl-benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 7.07 (d, 1H, *J* = 7.6 Hz, H_{ar}), 6.97 (m, 2H, H_{ar}), 2.59 (m, 6H, CH₂), 1.58 (m, 6H, CH₂), 1.41 (m, 6H, CH₂), 0.97 (m, 9H, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): δ = 140.3 (C_{ar}), 140.1 (C_{ar}), 137.6 (C_{ar}), 129.2 (CH_{ar}), 128.9 (CH_{ar}), 125.7 (C_{ar}), 35.3 (CH₂), 33.8 (CH₂), 33.6 (CH₂), 33.6 (CH₂), 32.5 (CH₂), 32.0 (CH₂), 22.9 (CH₂), 22.9 (CH₂), 22.5 (CH₂), 14.0 (2 x CH₃), 14.0 (CH₃).

B: 1,3,5-Tributyl-benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 6.84 (s, 3H, H_{ar}), 2.59 (m, 6H, CH₂), 1.58 (m, 6H, CH₂), 1.41 (m, 6H, CH₂), 0.97 (m, 9H, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 142.7$ (C_{ar}), 125.8 (CH_{ar}), 35.7 (CH₂), 33.8 (CH₂), 22.5 (CH₂), 14.0 (CH₃)

MS (70 eV), m/z (%): 246 (23, M⁺), 203 (25), 161 (100), 147 (15), 119 (12), 105 (17).

Identified spectroscopically by comparison with literature data.³ The regioisomeric ratio was determined by ¹H-NMR using signals at δ = 7.07, 6.97 and 6.84.

Table 2, Entry 2: Hexaphenylbenzene

¹H NMR (300 MHz, 300K, CDCl₃): $\delta = 6.83$ (s, 30H, H_{ar}).

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 140.6$ (C_{ar}), 140.3 (C_{ar}), 131.4 (CH_{ar}), 126.6 (CH_{ar}), 125.2 (CH_{ar}).

MS (70 eV), m/z (%): 534 (100, M⁺).

HRMS calcd. for $C_{42}H_{30}$ 534.2347, found: 534.2350.

Identified spectroscopically by comparison with literature data.⁴

Table 2, Entry 3: Hexaethylbenzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 2.63 (q, 12H, *J* = 7.4 Hz, CH₂), 1.19 (t, 18H, *J* = 7.4 Hz, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): δ = 137.4 (C_{ar}), 21.7 (CH₂), 15.3 (CH₃).

MS (70 eV), m/z (%): 246 (55, M⁺), 231 (100, M⁺-Me), 217 (12).

Identified spectroscopically by comparison with literature data.³

Table 2, Entry 4:

A: 1,2,4-Trimethyl-3,5,6-triphenylbenzene

¹H NMR (300 MHz, 300K, C₆D₆): δ = 7.35 – 6.92 (m, 18H, H_{ar}), 2.17 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 2.10 (s, 3H, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 142.5$ (C_{ar}), 141.6 (C_{ar}), 133.9 (C_{ar}), 131.9 (C_{ar}), 131.3 (C_{ar}), 130.3 (CH_{ar}), 129.4 (CH_{ar}), 128.4 (CH_{ar}), 127.3 (CH_{ar}), 126.5 (CH_{ar}), 125.7 (CH_{ar}), 19.4 (CH₃), 18.3 (CH₃), 18.1 (CH₃).

B: 1,3,5-Trimethyl-2,4,6-triphenylbenzene

¹H NMR (300 MHz, 300K, C_6D_6): $\delta = 7.35 - 6.92$ (m, 18H, H_{ar}), 2.07 (s, 9H, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 142.5$ (C_{ar}), 132.9 (C_{ar}), 130.3 (C_{ar}), 127.3 (CH_{ar}), 125.7 (CH_{ar}), 19.4 (CH₃).

MS (70 eV), m/z (%): 348 (100, M⁺).

HRMS calcd. for $C_{27}H_{24}$ 348.1878, found: 348.1874.

Identified spectroscopically by comparison with literature data.⁵ The regioisomeric ratio was determined by ¹H-NMR using signals at $\delta = 2.17, 2.14, 2.10$ and 2.07.

Table 2, Entry 5:

A: 1,2,4-Triethyl-3,5,6-trimethylbenzene

¹H NMR (300 MHz, 300K, CDCl₃): $\delta = 2.86$ (m, 6H, CH₂), 2.45 (s, 9H, CH₃), 1.31 (m, 9H, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): δ = 138.5 (C_{ar}), 137.7 (C_{ar}), 137.6 (C_{ar}), 132.3 (C_{ar}), 132.2 (C_{ar}), 131.1 (C_{ar}), 23.6 (CH₂), 23.0 (CH₂), 16.1 (CH₃), 16.1 (CH₃), 15.2 (CH₃), 14.9 (CH₃), 14.8 (CH₃), 13.8 (CH₃).

B: 1,3,5-Triethyl-2,4,6-trimethylbenzene

¹H NMR (300 MHz, 300K, CDCl₃): $\delta = 2.86$ (m, 6H, CH₂), 2.45 (s, 9H, CH₃) 1.31 (m, 9H, CH₃). ¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 138.7$ (C_{ar}), 131.2 (C_{ar}), 23.6 (CH₂), 15.2 (CH₃), 13.7 (CH₃).

MS (70 eV), m/z (%): 204 (49, M⁺), 189 (100, M⁺-Me), 175 (16), 161 (9), 147 (7), 129 (7), 119 (6), 105 (5), 91 (6), 77 (3).

Identified spectroscopically by comparison with literature data.^{6,7} The regioisomeric ratio was determined via GC.

Table 2, Entry 6:

A: 1,2,4-Tris(trimethylsilyl)benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 7.83 (s, 1H, H_{ar}), 7.65 (d, 1H, *J* = 7.3 Hz, H_{ar}), 7.49 (dd, 1H, *J* = 7.3, 1.3 Hz, H_{ar}), 0.37 (s, 9H, TMS), 0.35 (s, 9H, TMS), 0.26 (s, 9H, TMS).

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 146.6$ (C_{ar}), 144.8 (C_{ar}), 138.8 (CH_{ar}), 138.3 (C_{ar}), 134.4 (CH_{ar}), 132.8 (CH_{ar}), 2.0 (CH₃), 1.9 (CH₃), -1.2 (CH₃).

B: 1,3,5-Tris(trimethylsilyl)benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 7.68 (s, 3H, H_{ar}), 0.27 (s, 9H, TMS)

¹³C NMR (75 MHz, 300K, CDCl₃): δ = 140.0 (CH_{ar}), 139.3 (C_{ar}), -1.0 (CH₃)

MS (70 eV), m/z (%): 294 (12, M⁺), 279 (100, M⁺-Me), 263 (80), 191 (38), 124 (14), 73 (63). Identified spectroscopically by comparison with literature data.³ The regioisomeric ratio was determined by ¹H-NMR using signals at δ = 7.83, 7.68, 7.65 and 7.49.

Table 2, Entry 7:

A: 1,2,4-Triisopropenyl-benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 7.12 (m, 2H, H_{ar}), 6.95 (d, 1H, *J* = 7.8 Hz, H_{ar}), 5.16 (m, 1H, C=C<u>H</u>), 4.91 (m, 2H, CH₂), 4.87 (m, 2H, CH₂), 4.82 (m, 1H, C=C<u>H</u>),1.95 (m, 3H, CH₃), 1.86 (m, 6H, CH₃).

¹³C NMR (75 MHz, 300K, CDCl₃): δ = 146.6 (C_{ar}), 146.0 (C_{ar}), 142.8 (C_{ar}), 141.6 (C), 140.9 (C), 139.8 (C), 128.5 (CH_{ar}), 125.7 (CH_{ar}), 124.0 (CH_{ar}), 115.2 (2 x CH₂), 112.3 (CH₂), 23.8 (CH₃), 23.7 (CH₃), 21.8 (CH₃).

B: 1,3,5-Triisopropenyl-benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 7.01 (s, 3H, H_{ar}), 4.91 (m, 6H, CH₂), 1.98 (m, 9H, CH₃). ¹³C NMR (75 MHz, 300K, CDCl₃): δ = 143.6 (C_{ar}), 141.4 (C), 122.1 (CH_{ar}), 112.7 (CH₂), 22.0 (CH₃).

MS (70 eV), m/z (%): 198 (64, M⁺), 183 (100, M⁺-Me), 168 (29), 155 (66), 143 (55), 128 (53), 115 (29).

HRMS calcd. for $C_{15}H_{18}$ 198.1409 , found: 198.1404.

The regioisomeric ratio was determined by ¹H-NMR using signals at δ = 7.12, 7.01 and 6.95.

Table 2, Entry 8:

A: 1,2,4-Tris-(2-acetoxypropyl)benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 7.06 (m, 1H, H_{ar}), 6.97 (m, 2H, H_{ar}), 5.06 (m, 3H, CH), 3.10-2.93 (m, 2H, CH₂), 2.88 – 2.63 (m, 4H, CH₂), 1.97 (m, 9H, COCH₃), 1.22 (dd, 3H, *J* = 5.4, 1.0 Hz, CH₃), 1.19 – 1.16 (m, 6H, CH₃).

B: 1,3,5-Tris-(2-acetoxypropyl)benzene

¹H NMR (300 MHz, 300K, CDCl₃): δ = 6.87 (s, 3H, H_{ar}), 5.06 (m, 3H, CH), 2.88 – 2.63 (m, 3H, CH₂), 1.97 (m, 9H, COCH₃), 1.19 – 1.16 (m, 6H, CH₃).

The regioisomers and diastereoisomers in the ¹³C NMR are not seperatly assigned:

¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 170.1 / 170.1$ (CO), 137.5 (C_{ar}), 136.0 / 135.9 (C_{ar}), 135.6 / 135.6 (C_{ar}), 134.2 / 134.1 (C_{ar}), 131.4 / 131.4 (CH_{ar}), 130.3 (CH_{ar}), 128.5 / 128.5 (CH_{ar}), 127.4 (CH_{ar}), 71.1 (broad signal, CH), 41.8 (CH₂), 41.5 / 41.5 (CH₂), 38.7 (CH₂), 38.4 (CH₂), 21.0 (CH₂), 19.4 (CH₃), 19.2 – 19.1 (broad signal, CH₃).

HRMS calcd. for C₂₁H₃₀O₆ 401.194009 (M+Na), found: 401.193325.

The regioisomeric ratio was determined by ¹H-NMR using signals at δ = 7.06, 6.97 and 6.87.

Table 2, Entry 9:

A: Benzene-1,2,4-tricarboxylic acid trimethyl ester ¹H NMR (300 MHz, 300K, CDCl₃): $\delta = 8.34$ (d, 1H, J = 1.7 Hz, H_{ar}), 8.12 (dd, 1H, J = 8.0, 1.7Hz, H_{ar}), 7.67 (d, 1H, J = 8.0 Hz, H_{ar}), 3,88 (s, 3H, Me), 3,87 (s, 6H, Me). ¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 167.4$ (C), 166.6 (C), 165.2 (C), 136.1 (C_{ar}), 132.3 (C_{ar}), 132.1 (CH_{ar}), 131.4 (C_{ar}), 130.1 (CH_{ar}), 128.7 (CH_{ar}), 52.7 (CH₃), 52.7 (CH₃), 52.4 (CH₃). B: Benzene-1,3,5-tricarboxylic acid trimethyl ester ¹H NMR (300 MHz, 300K, CDCl₃): $\delta = 8.76$ (s, 3H, H_{ar}), 3.91 (s, 9H, Me). ¹³C NMR (75 MHz, 300K, CDCl₃): $\delta = 165.2$ (C), 131.0 (C_{ar}), 134.4 (CH_{ar}), 52.4 (CH₃).

MS (70 eV), m/z (%): 252 (3, M⁺), 221 (100, M⁺-Me).

Identified spectroscopically by comparison with literature data.^{8,9} The regioisomeric ratio was determined by ¹H-NMR using signals at $\delta = 8.76$, 8.34, 8.12 and 7.67.

- 1 J. E. Hill, G. Balaich, P. E. Fanwick, I. P. Rothwell, Organometallics, 1993, 12, 2911.
- 2 L. Yong, H. Butenschön, Chem. Commun., 2002, 2852.
- 3 C. Breschi, L. Piparo, P. Pertici, A. M. Caporusso, G. Vitulli, J. Organomet. Chem., 2000, 602, 1-2, 57.
- 4 L. Eshdat, A. Ayalon, R. Beust, R. Shenhar, M. Rabinoritz. J. Am. Chem. Soc., 2000, 122, 12637.
- 5 A. K. Jhingan, H. Jiang, M. Chen, J. Org. Chem., 1987, 52, 1161.
- 6 T. Yokota, Y. Sakurai, S. Sakaguchi, Y. Ishii, Tetrahedron Lett., 1997, 38, 3923.
- 7 R. Rathore, S. V. Lindeman, J. K. Kochi, J. Am. Chem. Soc., 1997, 119, 9393.
- 8 H. Neunhoeffer, G. Werner, Liebigs Ann. Chem., 1985, 4, 852.
- 9 B. Nakhle, S. A. Trammwell, K. M. Sigel, T. J. Meyer, B. W. Erickson, *Tetrahedron*, 1999, 55, 2835.